SDMML HT 2015 - Part C Problem Sheet 6

1. The receiver operating characteristic (ROC) curve plots the sensitivity against the specificity of a
binary classifier as the threshold for discrimination is varied.

Let the data space be R, and denote the class-conditional densities with go(z) and g1 (z) forz € R
and for the two classes 0 and 1. Consider a classifier that classifies x as class 1 if x > ¢, where
threshold c¢ varies from —oo to 4o0.

(a) Give expressions for the (population versions of) specificity and sensitivity of this classifier.

(b) Show that the AUC corresponds to the probability that X; > X, where data items X; and
Xy are independent and come from classes 1 and O respectively.

2. We are deciding how to split a node in a binary classification tree. The node contains 300 data
vectors of class 1 and 100 of class 2. Write this as (300,100). We can split the node either as
(a) (200, 100), (100, 0), or (b) (150, 50), (150, 50). Compute the change in the impurity measure
when using the misclassification rate and when using the Gini impurity for two splits. Which split
is preferred?

3. Consider a binary classification problem with )) = {1,2}. We are at a node ¢ in a decision tree
and would like to split it based on Gini impurity. Consider a categorical attribute A with L levels,
ie., 2 € {ay,as,...,ar}. For a generic example (X;, Y;) reaching node ¢, denote:

P = ]P)(Y;:k)v k:1a2a

@ = ]P’(Xi(A):ag),Ezl,...,L,

Pkle = P(Yz‘:k‘|Xi(A) :ag), k=1,2,and¢=1,..., L.

Thus, the population Gini impurity is given by 2p;(1 — p;). Further, assume N = n examples
{(X;,Y:)} | have reached the node ¢, and denote

NF = |i: Yi=k}, k=12,
NE = ‘{Z XZ-(A):CLZ}),EZL...,L,
Nye = Hz Y;:k:andXi(A):ag} k=1,2 andl=1,... L.

(a) Assuming data vectors reaching node ¢ are independent, explain why Ny|N = n, N¥|N =n
and Ny | Ny = ny have respectively multinomial, binomial and binomial distributions with

parameters q¢, p, and py,.

(b) If we split using attribute A (and are not using dummy variables) we will have an L-way
split and the resulting impurity change will be

L

Acini =2p1(1 —p1) = 2 Z @ep1ye(1 — paje)
=1



The parameters py, g, and D¢ are unknown, however. The Gini impurity estimate AGini 18
thus computed using the plug-in estimates p, = N*/N, ¢, = N;/N and Prje = Nije/Ne
respectively. Calculate the expected estimated impurity change E[Agini| N = n] between
node ¢ and its L child-nodes, conditioned on N = n data vectors reaching node t.

(c) Suppose the attribute-levels are actually uninformative about the class label, so that Prje =
k. Show that, conditioned on N = n, the expected estimated Gini impurity change is then
equal

2p1(1 = p1)(L = 1)/n.

(d) Is this attribute selection criterion biased in favor of attributes with more levels?

4. Download the wine dataset from
https://archive.ics.uci.edu/ml/machine-learning—-databases/wine/wine.data
and load it using read.table ("wine.data", sep=","). Description of the dataset is
given athttps://archive.ics.uci.edu/ml/datasets/Winel

(a) Make a biplot using the scale=0 option, and then use the x1abs=as.numeric (tdSType)
option in biplot to label points by their $Type. The output should look like:
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(b) Now train a classification tree using rpart, and relate the decision rule discovered there to
the projections of the original variable axes displayed in the biplot. Give the plots of the tree
as well as of the cross-validation results in rpart object using plotcp.

(¢c) Now produce a Random Forest fit, calculating the out-of-bag estimation error and compare
with the tree analysis. You could start like:

library (randomForest)
rf <- randomForest (td[,2:14],td[,1], importance=TRUE)
print (rf)


https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
https://archive.ics.uci.edu/ml/datasets/Wine

Use tuneRF to find an optimal value of mt ry, the number of attribute candidates at each

split. Use var ImpPlot to determine what are the most important variables.

5. Suppose we have a model p(x,y|0) where X is an observed variable and Y unobserved. We
would like to take a Bayesian approach to learning, treating the parameter © to be random as

well, with prior p(6).

(a) Suppose that Q(y,0) is a distribution over both Y and ©. Explain why the following is a

lower bound on p(x):

F(Q) = Eq[logp(z,y,0) —log Q(y, )]

(b) Show that the optimal Q(y, #) is simply the posterior p(y, 8|x).

(c) Typically the posterior is intractable. Consider a factorized distribution Q(y, 0) = Qy (y)Qe(0).
In other words we assume that Y and © are independent. Derive the optimal QJy given a Qo,
and hence describe an algorithm to optimize F (@) subject to assumption of independence
between Y and Q).



