
SDMML HT 2016 - Part C Problem Sheet 5
1. (k-Nearest Neighbours, Curse of Dimensionality) Consider using a k-NN classifier where the

real-valued features are uniformly distributed in the p-dimensional unit cube. Suppose we are
interested in estimating the distribution over class labels around a test point x by using neighbours
within a hyper-cube centred at x.

(a) Suppose we wish to use a fraction α of the training data to estimate the distribution over
class labels at x. What should be the edge length of this hyper-cube to ensure that it includes
on average α% of the training data? If p = 10 and α = 1%, compute the edge length of this
hyper-cube. In this scenario, is k-NN a “local” algorithm, i.e. using only local neighbours to
x?

(b) Assuming you have access to say n = 500 training data, does it appear reasonable to perform
k-NN for large values of k (say k > 10)? Explain briefly why or why not.

2. (1-NN risk in binary classification) Let {(Xi, Yi)}ni=1 be a training dataset where Xi ∈ Rp and
Yi ∈ {0, 1}. We denote by gk (x) the conditional density of X given Y = k and assume that
gk (x) > 0 for all x ∈ Rp, and the class probabilities as πk = P (Y = k). We further denote
q (x) = P (Y = 1|X = x).

(a) Consider the Bayes classifier (minimizing risk w.r.t. 0/1 loss 1{f(X) 6= Y }):

fBayes (x) = argmax
k∈{0,1}

πkgk (x) .

Write the conditional expected loss P [f(X) 6= Y |X = x] at a given test point X = x in
terms of q (x). [The resulting expression should depend only on q (x)].

(b) The 1-nearest neighbour (1-NN) classifier assigns to a test data point x the label of the closest
training point; i.e. f1NN (x) = y (class of nearest neighbour in the training set). Given some
test point X = x and its nearest neighbour X ′ = x′, what is the conditional expected loss
P [f1NN(X) 6= Y |X = x,X ′ = x′] of the 1-NN classifier in terms of q (x) , q (x′)?

(c) As the number of training examples goes to infinity, i.e. n → ∞, assume that the train-
ing data fills the space such that q (x′) → q (x), ∀x. Give the limit (as n → ∞) of
P [f1NN(X) 6= Y |X = x]. If we denote by RBayes = P

[
Y 6= fBayes (X)

]
and R1NN =

P [Y 6= f1NN (X)], show that for sufficiently large n

RBayes ≤ R1NN ≤ 2RBayes
(
1−RBayes

)
.

3. Recall the definition of a one-hidden layer neural network for binary classification in the lectures.
The objective function is L2-regularized log loss:

J = −
n∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) +
λ

2

∑
jl

(whjl)
2 +

∑
l

(wol )
2


and the network definition is:

ŷi = s

(
bo +

m∑
l=1

wol hil

)
, hil = s

bhl + p∑
j=1

whjlxij

 ,

1



with transfer function s(a) = 1
1+e−a .

(a) Verify that the derivatives needed for gradient descent are:

∂J

∂wol
= λwol +

n∑
i=1

(ŷi − yi)hil,

∂J

∂whjl
= λwhjl +

n∑
i=1

(ŷi − yi)wol hil(1− hil)xij .

(b) Suppose instead that you have a neural network for binary classification with L hidden lay-
ers, each hidden layer having m neurons with logistic transfer function. Give the parameter-
ization for each layer, and derive the backpropagation algorithm to compute the derivatives
of the objective with respect to the parameters. For simplicity, you can ignore bias terms.

4. A mixture of experts is an ensemble model in which a number of experts “compete” to predict a
label.

Consider a regression problem with dataset {(xi, yi)}ni=1 and yi ∈ R. We have E experts, each
associated with a parametrized regression function fj(x; θj), for j = 1, . . . , E (for example, each
expert could be a neural network).

(a) A simple mixture of experts model uses as objective function

J(π, σ2, (θj)
E
j=1) =

n∑
i=1

log
E∑
j=1

πje
− 1

2σ2
‖fj(xi;θj)−yi)‖2

where π = (π1, . . . , πE) are mixing proportions and σ2 is a parameter.

Relate the objective function to the log-likelihood of a mixture model where each component
is a conditional distribution of Y given X = x.

(b) Differentiate the objective function with respect to θj . Introduce a latent variable zi, indi-
cating which expert is responsible for predicting yi, and interpret ∂J

∂θj
in the context of the

corresponding EM algorithm. In this context, one needs to use the generalized EM algo-
rithm, where in the M-step gradient descent is used to update the expert parameters θj .

(c) A mixture of experts allows each expert to specialize in predicting the response in a certain
part of the data space, with the overall model having better predictions than any one of the
experts.

However to encourage this specialization, it is useful also for the mixing proportions to
depend on the data vectors x, i.e. to model πj(x;φ) as a function of x with parameters
φ. The idea is that this gating network controls where each expert specializes. To ensure∑E

j=1 πj(x;φ) = 1, we can use the softmax nonlinearity:

πj(x;φ) =
exp(hj(x;φj))∑E
`=1 exp(h`(x;φ`))

where hj(x;φj) are parameterized functions for the gating network.

2



The previous generalized EM algorithm extends to this scenario easily. Describe what
changes have to be made, and derive a gradient descent learning update for φj .

5. In this question you will investigate fitting neural networks using the nnet library in R. We will
train a neural network to classify handwritten digits 0-9. Download files usps trainx.data,
usps trainy.data, usps testx.data, usps testy.data from
http://www.stats.ox.ac.uk/˜sejdinov/sdmml/data/.
Each handwritten digit is 16 × 16 in size, so that data vectors are p = 256 dimensional and each
entry (pixel) takes integer values 0-255. There are 2000 digits (200 digits of each class) in each of
the training set and test set. You can view the digits with

image(matrix(as.matrix(trainx[500,]),16,16),col=grey(seq(0,1,length=256)))

trainy[500,]

Download the R script nnetusps.R from the course webpage. The script trains a 1-hidden
layer neural network with S = 10 hidden units for T = 10 iterations, reports the training and
test errors, runs it for another 10 iterations, and reports the new training and test errors. To make
computations quicker, the script down-samples the training set to 200 cases, by using only one
out of every 10 training cases. You will find the documentation for the nnet library useful:
http://cran.r-project.org/web/packages/nnet/nnet.pdf.

(a) Edit the script to report the training and test error after every iteration of training the network.
Use networks of size S = 10 and up to T = 100 iterations. Plot the training and test errors
as functions of the number of iterations. Discuss the results and the figure.

(b) Edit the script to vary the size of the network, reporting the training and test errors for
network sizes S = 1, 2, 3, 4, 5, 10, 20, 40. Use T = 25 iterations. Plot these as a function of
the network size. Discuss the results and the figure.

3

http://www.stats.ox.ac.uk/~sejdinov/sdmml/data/
http://cran.r-project.org/web/packages/nnet/nnet.pdf

