SDMML HT 2016 - Part C Problem Sheet 4

1. Assume we trained a classifier using data D = {x;,y;},, where z; € RP and y; € {1,2,..., K}
We are interested in classifying a new input vector . However, we have only been able to collect
p — 1 features, say (5:(2), e i‘(p)) and () is missing. Explain whether or not it is possible to
use the trained classifier to classify this incomplete input vector in the cases listed below. If it is

possible, how do you classify the incomplete test vector?
Note: You do not need to calculate any integrals in this question.

(a) A naive Bayes model, with

p
ge(@) = [ [ p@|ex;),
j=1

i.e. conditioned upon Y = k, you assume that the features are independent and feature 2(?)
has probability mass function/density p(z9)|¢y;).

(b) An LDA model, i.e.
g (z) = N (5 pg, )

(c) Generally, what condition on the conditional density/pmf gy (x) would allow easy classifi-
cation (i.e, without numerical integration) in the presence of missing features for generative
classifiers like LDA or naive Bayes?

(d) A logistic regression model, i.e.
p(Y = ylX = 2) = s(y(a+ b))

where y € {+1, —1}.

2. Consider using logistic regression model
p(Y = y|X = z) = s(y(a+ b x))

for the conditional distribution of binary labels Y € {+1, —1} given data vectors X.

(a) Suppose that the data is linearly separable, i.e., there is a hyperplane separating the two
classes. Show that the maximum likelihood estimator is ill-defined.

(b) Suppose the first entry X (1) in X is binary, i.e. it takes on only values 0 or 1. Suppose that
(1)

in the dataset, whenever y; = —1, the corresponding entry x;"” = 0, but there are data cases

)

with y; = +1, and ;" taking on both values. Show that the maximum likelihood estimator

of by is oo, but that the dataset need not be linearly separable.
3. Parameter C' in C'-SVM can sometimes be hard to interpret. An alternative parametrization is

given by v-SVM:
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(note that we now directly adjust the constraint threshold p).

Using complementary slackness, show that v is an upper bound on the proportion of non-margin

support vectors (margin errors) and a lower bound on the proportion of all support vectors with

non-zero weight (both those on the margin and margin errors). You can assume that p > 0 at the

optimum (non-zero margin).

. Let (z,y;)!"_, be our dataset, with z; € RP and y; € R. Linear regression can be formulated as

empirical risk minimization, where the model is to predict ¢ as « | 3, and we use the squared loss:

(a)

(b)

(©)

R™(B) = 3 L s — ] )

=1

Show that the optimal parameter is
B=XTX)"'XTY

where X is a n X p matrix with ith row given miT, and Y is a n x 1 matrix with ¢th entry y;.
Consider regularizing our empirical risk by incorporating a Lo regularizer. That is, find 5
minimizing
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Show that the optimal parameter is given by the ridge regression estimator

B=W+X"X)1XTY

Suppose we wish to introduce nonlinearities into the model, by transforming = — ¢(x).
Show how this transformation may be achieved using the kernel trick. That is, let ® be a
matrix with ith row given by o(z;)". The optimal parameters ,5’ would then be given by
(previous part):

B=(\+d"®) @'Y
Express the predicted y values on the training set, <I>B, only in terms of Y and the Gram
matrix K = ®® ", with K;; = ¢(z;) "¢(x;) = k(z;,2;) where k is some kernel function.
Compute an expression for the value of yq predicted by the model at a test vector z.
You will find the Woodbury matrix inversion formula useful:

(A+UBV) '=A"1'-AlUuBt+vatu)ytva?

where A and B are square invertible matrices of size n x n and p x p respectively, and U
and V are n x p and p X n rectangular matrices.



5. (Representer Theorem) Consider general regularized empirical risk minimisation problem

min R™( £, ) + Q([|wl]3),

w,b

where R™(fy, 1) = 2 3" | L (yi, fwp(x:)) is the empirical risk, {2 is a non-decreasing function,

and f, p(z) = sign(w' p(z) + b), for some feature map x — ¢ ().

(a) Show that the optimal w lies in the subspace spanned by the training feature vectors, i.e., it

takes form

n
w = Z a;p(z;).
i=1

(b) Denote k(x,2') = ¢(x) T¢(a'). Express the decision function f,, ;(z) in terms of k and the

regularization term §2( Hng) in terms of the kernel matrix.

Optional
6. (One-Class SVM) A Gaussian RBF kernel on X = RP? is given by

k(x,2') = exp (—7 |z — x’H2> :

1)

(i) What is k(x, ) for this kernel? What can you conclude about the norm of the features

©(x) of 2?7 What values can the angles between ¢(z) and p(z') take? Sketch the set

{¢(x) : x € X} as if the features lived in a 2D space.

(ii) Let{x;};" , be asetof points in X = R? (no labels are given). The one-class Support Vector

Machine (SVM) is a method for outlier detection which in its primal form is defined as

1 1 < :
min 5 lwl* + m;& —p,  subject to (w, p(x:)) = p— &, & >0,

where v is a given SVM parameter, features ¢(x) correspond to the RBF kernel in (1), and

&;’s are the non-negative slack variables. The fitted hyperplane (w, ¢(x)) — p in the feature

space separates the majority of points from the origin (while pushing away from the origin

as much as possible) and is used to determine “atypical” z-instances.

Using the 2D intuition from (i), sketch the corresponding hyperplane in the feature space

and annotate with p, w and a non-zero slack ; for an “outlier” ;. Would it make sense to

use the one-class SVM with a linear kernel?

(iii)) Write the dual form of the one-class SVM.



