SDMML HT 2016 - Part C Problem Sheet 3

1. Consider two univariate normal distributions N (u, %) with known parameters 4 = 10 and
o4 = dforclass A and up = 20 and o = 5 for class B. Suppose class A represents the random
score X of a medical test of normal patients and class B represents the score of patients with
a certain disease. A priori there are 100 times more healthy patients than patients carrying the
disease.

(a) Find the optimal decision rule in terms of misclassification error (0-1 loss) for allocating a
new observation z to either class A or B.

(b) Repeat (a) if the cost of a false negative (allocating a sick patient to group A) is 6 > 1
times that of a false positive (allocating a healthy person to group B). Describe how the rule
changes as 6 increases. For which value of 6 are 84.1% of all patients with disease correctly
classified?

2. For a given loss function L, the risk R is given by the expected loss
R(f) =EIL(Y, F(X))],
where f = f(X) is a function of the random predictor variable X.
(a) Consider a regression problem and the squared error loss
L(Y, f(X)) = (Y = f(X))*.
Derive the expression of f = f(X) minimizing the associated risk.

(b) What if we use the absolute (L) loss instead?

LY, f(X)) = Y = f(X)].

3. Suppose we have a two-class setup with classes —1 and 1, i.e., ) = {—1, 1}, and a 2-dimensional
predictor variable X. We find that the means of the two groups are at i_; = (—1,—1)" and
fi1 = (1,1) T respectively. The estimated prior class probabilities 7y and 7_; are equal.

(a) Applying LDA, the covariance matrix is estimated to be, for some value of 0 < p < 1,

z=<1p>.
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Find the decision boundary as a function of p.

(b) Suppose instead that, we model each class with its own covariance matrix. We estimate the

covariance matrices for group -1 as
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Describe the decision rule and draw a sketch of it in the two-dimensional plane.

and for group 1 as



4. Consider applying LDA to a two-class dataset. We will verify some of the claims in the lectures.

We use the notation from the lectures.

(a) Show that between-class covariance B is equal to B =

nin2
n2

(p11—p2) (11 —p2) T and thus has

rank 1. Show that v; = E_l(ul — u2) spans the one-dimensional discriminant subspace,

. 1 . 11 . .
i.e., that u; = X2wv; is an eigenvector of B®* = ¥~ 2BX™ 2. What is the corresponding

eigenvalue?

(b) Explain why it is sufficient to look at the projection of a data vector x onto the discriminant

subspace, i.e. subspace spanned by X1 (11 — u2).

(c) In the case where the within-class covariance is > = I, explain the geometry of the decision
rule of LDA with the help of a diagram.

5. Show that under a Naive Bayes model with binary predictors from the lectures, the Bayes classifier

bi Bayes(l’) minimizing the total risk for the 0 — 1 loss has a linear discriminant function of the form

fBayes(x) = arg ’?if%)é ap + b;—x

and find the values of ay, by.

6. Data in the table gives attributes of 14 customers of an electronics shop and a class label on

whether or not they purchased a computer. Using a Naive Bayes classifier, predict whether a new

customer = (age=youth, income=medium, student=yes,credit=fair) will buy a

computer?

RID age income  student credit_rating  Class: buys_computer
1 youth high no fair no
2 youth high no excellent no
3 middle_aged  high no fair yes
4 senior medium  no fair ves
5 senior low ves fair yes
6 senior low ves excellent no
7 middle_aged  low ves excellent yes
8 vouth medium  no fair no
9 vouth low ves fair ves

10 senior medium  ves fair ves

11 vouth medium  yes excellent yes

12 middle_aged medium no excellent yes

13 middle_aged  high yes fair yes

14 senior medium  no excellent no




