
SDMML HT 2016 - Part C Problem Sheet 3
1. Consider two univariate normal distributions N (µ, σ2) with known parameters µA = 10 and
σA = 5 for class A and µB = 20 and σB = 5 for class B. Suppose class A represents the random
score X of a medical test of normal patients and class B represents the score of patients with
a certain disease. A priori there are 100 times more healthy patients than patients carrying the
disease.

(a) Find the optimal decision rule in terms of misclassification error (0-1 loss) for allocating a
new observation x to either class A or B.

(b) Repeat (a) if the cost of a false negative (allocating a sick patient to group A) is θ > 1

times that of a false positive (allocating a healthy person to group B). Describe how the rule
changes as θ increases. For which value of θ are 84.1% of all patients with disease correctly
classified?

2. For a given loss function L, the risk R is given by the expected loss

R(f) = E [L(Y, f(X))] ,

where f = f(X) is a function of the random predictor variable X .

(a) Consider a regression problem and the squared error loss

L(Y, f(X)) = (Y − f(X))2.

Derive the expression of f = f(X) minimizing the associated risk.

(b) What if we use the absolute (L1) loss instead?

L(Y, f(X)) = |Y − f(X)|.

3. Suppose we have a two-class setup with classes−1 and 1, i.e., Y = {−1, 1}, and a 2-dimensional
predictor variable X . We find that the means of the two groups are at µ̂−1 = (−1,−1)> and
µ̂1 = (1, 1)> respectively. The estimated prior class probabilities π̂1 and π̂−1 are equal.

(a) Applying LDA, the covariance matrix is estimated to be, for some value of 0 ≤ ρ ≤ 1,

Σ̂ =

(
1 ρ

ρ 1

)
.

Find the decision boundary as a function of ρ.

(b) Suppose instead that, we model each class with its own covariance matrix. We estimate the
covariance matrices for group -1 as

Σ̂−1 =

(
5 0

0 1/5

)
,

and for group 1 as

Σ̂1 =

(
1/5 0

0 5

)
.

Describe the decision rule and draw a sketch of it in the two-dimensional plane.
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4. Consider applying LDA to a two-class dataset. We will verify some of the claims in the lectures.
We use the notation from the lectures.

(a) Show that between-class covarianceB is equal toB = n1n2
n2 (µ1−µ2)(µ1−µ2)> and thus has

rank 1. Show that v1 = Σ−1(µ1 − µ2) spans the one-dimensional discriminant subspace,
i.e., that u1 = Σ

1
2 v1 is an eigenvector of B• = Σ−

1
2BΣ−

1
2 . What is the corresponding

eigenvalue?

(b) Explain why it is sufficient to look at the projection of a data vector x onto the discriminant
subspace, i.e. subspace spanned by Σ−1(µ1 − µ2).

(c) In the case where the within-class covariance is Σ = I , explain the geometry of the decision
rule of LDA with the help of a diagram.

5. Show that under a Naı̈ve Bayes model with binary predictors from the lectures, the Bayes classifier
fBayes(x) minimizing the total risk for the 0−1 loss has a linear discriminant function of the form

fBayes(x) = arg max
k=1,2

ak + b>k x.

and find the values of ak, bk.

6. Data in the table gives attributes of 14 customers of an electronics shop and a class label on
whether or not they purchased a computer. Using a Naı̈ve Bayes classifier, predict whether a new
customer x = (age=youth,income=medium,student=yes,credit=fair) will buy a
computer?
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