
SDMML HT 2016 - Part C Problem Sheet 2
1. Let x1, . . . , xn be a dataset of p-dimensional vectors and C = {C1, C2, . . . , CK} a partition of
{1, . . . , n}. For each cluster Ck, denote nk = |Ck| and define

x̄k =
1

nk

∑
i∈Ck

xi to be the within-cluster mean

x̄ =
1

n

K∑
k=1

nkx̄k =
1

n

n∑
i=1

xi to be the overall mean

and

T =

K∑
k=1

∑
i∈Ck

(xi − x̄)(xi − x̄)> to be the total deviance to the overall mean

W =

K∑
k=1

∑
i∈Ck

(xi − x̄k)(xi − x̄k)> to be the within-cluster deviance to the cluster mean

B =
K∑
k=1

nk(x̄k − x̄)(x̄k − x̄)> to be the between-cluster deviance

where T,W and B are all p× p matrices.

(a) Verify that T = W +B.

(b) Explain how the K-means objective is related to W .

(c) How does T change during the course of the K-means algorithm? How does B change?

2. In lectures, we derived the M-step updates for fitting Gaussian mixtures with EM algorithm, for
the mixing proportions and for the cluster means, assuming the common covariance σ2I is fixed
and known.

(a) What happens to the algorithm if we set σ2 to be very small? How does the resulting algo-
rithm as σ2 → 0 relate to K-means?

(b) If σ2 is in fact not known and is a parameter to be inferred as well, derive an M-step update
for σ2.

3. Assume you are interested in clustering n binary images. Binary images are modelled as i.i.d.
samples {xi}ni=1 for each i = 1, . . . , n from a random vector Xi = (Xi1, . . . , Xip) of p binary
random variables (p being the number of pixels). Probability mass function ofXi is a mixture with
mixing proportions π1, . . . , πK satisfying πk ≥ 0 for each k and

∑K
k=1 πk = 1, and each mixture

component k is modelled as a product of p independent Bernoulli variables with parameters φk =

(φk1, ..., φkp) ∈ [0, 1]p. In other words, Zi ∼ Discrete (π1, . . . , πK) is the variable on {1, . . . ,K}
indicating which component Xi belongs to, and Xij |Zi = k ∼ Bernoulli (φkj) independently for
j = 1, . . . , p.

(a) Having observed dataset {xi}ni=1, write down the log-likelihood explicitly as a function of
the parameters θ = (πk, φk)Kk=1.
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(b) We want to estimate the unknown parameters by maximizing the log-likelihood using the
EM algorithm. Denote by zi a value in {1, . . . ,K}, and z = (zi)

n
i=1 ∈ {1, . . . ,K}n.

Write down explicitly the variational free energy F(θ, q) as a function of q(z) and of the
parameters (πk, φk).

(c) Derive explicitly the EM update equations by setting derivatives of F w.r.t. q, πk and φkj to
zero and solving.

4. Verify that in the probabilistic PCA model from the lectures, E-step of the EM algorithm at itera-
tion t+ 1 can be written as

q(t+1)(yi) = N
(
yi; b

(t)
i , R(t)

)
where

b
(t)
i =

(
(L(t))>L(t) + (σ2)(t)I

)−1
(L(t))>xi, (1)

R(t) = (σ2)(t)
(

(L(t))>L(t) + (σ2)(t)I
)−1

. (2)

Optional (using R)

5. Download cognate.txt from http://www.stats.ox.ac.uk/˜sejdinov/sdmml/data/

and load it using X <- read.table("cognate.txt").

It contains an 87×2665 matrix of observations on each of 87 Indo-European languages where the
presence (1) or absence (0) of 2665 homologous traits has been recorded.

Historical linguists have grouped these languages into clades. Most large-scale groupings are
contested, but something like

{Indic, Iranian}

{Balto− Slav, (Germanic, Italic, Celtic)}

is not too controversial. The position of the Armenian, Greek, Albanian, Tocharian and Hittite
groups is in doubt (though not within the second of the above super-clade).

We would like to cluster the languages into groups on the basis of these data. It is also of interest
to represent the languages in a planar map in order to visualise similarities between languages.

(a) These data are categorical. The Simple Matching Coefficient for two data vectors is the
proportion of variables which are unequal. The Jaccard coefficient for two language data
vectors is the proportion of variables with at least one present which are unequal (so 1100
and 1010 have SMC 2/4 and JC 2/3). Which dissimilarity measure is appropriate for these
data and why?

(b) Run MDS with Sammon mapping using both SMC and Jaccard distance on these data. You
can use
D<-dist(X,method="binary") to compute the Jaccard distances, and
D<-dist(X,method="manhattan") for SMC.
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(c) Compute agglomerative clustering of the data using Jaccard with single, average and com-
plete linkage. Plotting the dendrograms with language labels on the leaves, which linkage
algorithm seems to produce sensible results? You can use
hclust(D,method=....) or agnes(D,method=...) for various choices of link-
age (agnes is part of the cluster library, so you have to load using library(cluster)).
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