
SDMML HT 2016 - Part C Problem Sheet 1
1. Suppose a p-dimensional random vector X has a covariance matrix Σ. Under what condition

will the first principal component direction be identifiable? (It is not identifiable if there are
more than one direction satisfying the defining criterion). Supposing it is not identifiable, can
you describe the behaviour of the first principal component computed using a dataset, when the
dataset is perturbed by adding small amounts of noise? [hint: what happens when PCA is applied
to samples from an isotropic Gaussian?]

2. We perform PCA on a centred dataset consisting of an i.i.d. sample {xi}ni=1 of a random vector

X =
[
X(1) . . . X(p)

]>
. Denote the projections to principal components by Z(1), . . . , Z(p). Find

the sample variance of Z(j) and show that the sum of the sample variances of individual variables
X(1), . . . , X(p) is equal to the sum of the sample variances of projections Z(1), . . . , Z(p).

3. Suppose we do PCA, projecting each xi into zi = V >1:kxi where V1:k = [v1, . . . , vk], i.e., the first
k principal components. We can reconstruct xi from zi as x̂i = V1:kzi.

(a) Show that ‖x̂i − x̂j‖ = ‖zi − zj‖.

(b) Show that the error in the reconstruction equals:

n∑
i=1

‖xi − x̂i‖22 = (n− 1)

p∑
j=k+1

λj

where λk+1, . . . , λp are the p−k smallest eigenvalues. Thus, the more principal components
we use for the reconstruction, the more accurate it is. Further, using the top k principal
components is optimal in the sense of least reconstruction error.

4. We have a dataset of n vectors x1, . . . , xn ∈ Rp with zero mean. We wish to “compress” the
dataset by representing each vector xi using a lower dimensional vector zi ∈ Rk with k < p. We
assume a linear model for reconstructing xi from zi. That is, there is a matrix M ∈ Rp×k such
that Mzi is close to xi. We measure the reconstruction error using Euclidean distance, so that the
total error is:

n∑
i=1

‖xi −Mzi‖22

We wish to find a reconstruction model M and representations z1, . . . , zn minimizing the recon-
struction error.

(a) Suppose M is given and that it is full rank. Show that the representations z1, . . . , zn mini-
mizing the reconstruction error is given by:

zi = (M>M)−1M>xi.

(b) If M is a solution minimizing the total reconstruction error, explain why MQ is also a
solution, where Q is any k × k invertible matrix.

(c) Show that PCA projection gives an optimal M . [hint: there are a few ways to show this.
One way is to recall the property that SVD of X gives the best rank k approximation to X.]

5. Under the assumption that your data are centred, show that you can compute the n × n Gram
matrix B such that bij = x>i xj using the dissimilarity matrix D where dij = ‖xi − xj‖2.
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6. In lectures we discussed using the Mahalanobis distance to measure distances in K-means:

‖x− y‖M =
√

(x− y)>M−1(x− y)

where M is a positive definite matrix. Explain why using this distance is equivalent to applying
K-means using the standard Euclidean distance on a transformed data set. What is the choice of
the M matrix that leads to an algorithm which is equivalent to first whitening the data?

Optional

7. Download abalone data from http://archive.ics.uci.edu/ml/datasets/Abalone,
then load it with
ab<-read.table( ’abalone.data’,sep=’,’,

col.names=c(’Sex’,’Length’,’Diam’,’Height’,’Whole’,
’Shucked’,’Viscera’,’Shell’,’Rings’) )

x<-ab[,2:8]
y<-ab[,9]

x contains seven quantitative attributes, while y contains an integer value corresponding to the
number of rings of abalone (related to its age). Perform PCA on correlation matrix of x and look
at the biplot. Spot two nasty outliers / likely typos in the data and remove them. Rerun PCA
without them. How much variance is explained by the first principal component? Consider the
first two principal components - what can you say about the shape of the cloud of points in this
2d space? What can you conclude about the relationship of the first principal component and the
number of rings in y?
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