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Support Vector Machines

Support Vector Machines
These slides are based on Arthur Gretton’s UCL course on Advanced Topics in Machine Learning

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html


Support Vector Machines Review of Convex Optimization

Optimization and the Lagrangian

Optimization problem on x ∈ Rd / primal,

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m
hj(x) = 0 j = 1, . . . r.

domain D :=
⋂m

i=0 domfi ∩
⋂r

j=1 domhj (nonempty).
p∗: the (primal) optimal value

Idealy we would want an unconstrained problem

minimize f0(x) +
m∑

i=1

I− (fi(x)) +
r∑

j=1

I0 (hj(x)) ,

where I−(u) =

{
0, u ≤ 0
∞, u > 0

and I0(u) =

{
0, u = 0
∞, u 6= 0

.
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Lower bound interpretation of Lagrangian

The Lagrangian L : Rd ×Rm ×Rr → R is an (easier to optimize) lower bound
on the original problem:

L(x, λ, ν) := f0(x) +
m∑

i=1

λifi(x)︸ ︷︷ ︸
≤I−(fi(x))

+

r∑
j=1

νjhj(x)︸ ︷︷ ︸
≤I0(hj(x))

,

The vectors λ and ν are called Lagrange multipliers or dual variables. To
ensure a lower bound, we require λ � 0.

fi(x)

I
−
(·)

I0(·)

hi(x)
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Lower bound interpretation of Lagrangian

Simplest example: minimize over x the function L(x, λ) = f0(x) + λf1(x)

f0

f1

f0 + λf1

p
∗

f1 ≤ 0

Reminders:

f0 is function to be

minimized.

f1 ≤ 0 is inequality

constraint

λ ≥ 0 is Lagrange

multiplier

p∗ is minimum f0 in

constraint set

Figure from Boyd and Vandenberghe
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Lagrange dual: lower bound on optimum p∗

The Lagrange dual function: minimize Lagrangian When λ � 0 and
fi(x) ≤ 0, Lagrange dual function is

g(λ, ν) := min
x∈D

L(x, λ, ν).

A dual feasible pair (λ, ν) is a pair for which λ � 0 and (λ, ν) ∈ dom(g).
We will show: for any λ � 0 and ν,

g(λ, ν) ≤ f0(x)

wherever
fi(x) ≤ 0
hj(x) = 0

(including at optimal point f0(x∗) = p∗).
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Lagrange dual is a lower bound on p∗

Assume x̃ is feasible, i.e. fi(x̃) ≤ 0, hi(x̃) = 0, x̃ ∈ D, λ � 0. Then

m∑
i=1

λifi(x̃) +
r∑

i=1

νihi(x̃) ≤ 0

Thus

g(λ, ν) := min
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
r∑

i=1

νihi(x)

)

≤ f0(x̃) +
m∑

i=1

λifi(x̃) +
r∑

i=1

νihi(x̃)

≤ f0(x̃).

This holds for every feasible x̃, hence lower bound holds.
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Best lower bound: maximize the dual
Best lower bound g(λ, ν) on the optimal solution p∗ of original problem:
Lagrange dual problem

maximize g(λ, ν)

subject to λ � 0.

Dual feasible: (λ, ν) with λ � 0 and g(λ, ν) > −∞.
Dual optimal: solutions (λ∗, ν∗) to the dual problem, d∗ is optimal value.
Weak duality always holds:

max
λ�0,ν

min
x∈D

L(x, λ, ν)︸ ︷︷ ︸
=g(λ,ν)

= d∗ ≤ p∗ = min
x∈D

max
λ�0,ν

L(x, λ, ν)︸ ︷︷ ︸
=

{
f0(x) if constraints satisfied,
∞ otherwise.

Strong duality: (does not always hold, conditions given later):

d∗ = p∗.

If strong duality holds: can solve the dual problem to find p∗.
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How do we know if strong duality holds?

Conditions under which strong duality holds are called constraint
qualifications (they are sufficient, but not necessary)

(Probably) best known sufficient condition: Strong duality holds if
Primal problem is convex, i.e. of the form

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . , n
Ax = b

for convex f0, . . . , fm, and
Slater’s condition: there exists a strictly feasible point x̃, such that
fi(x̃) < 0, i = 1, . . . , n (reduces to the existence of any feasible point when
inequality constraints are affine, i.e., Cx � d).
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A consequence of strong duality...

Assume primal is equal to the dual. What are the consequences?
x∗ solution of original problem (minimum of f0 under constraints),
(λ∗, ν∗) solutions to dual

f0(x∗) =
(assumed)

g(λ∗, ν∗)

=
(g definition)

min
x∈D

(
f0(x) +

m∑
i=1

λ∗i fi(x) +
p∑

i=1

ν∗i hi(x)

)

≤
(inf definition)

f0(x∗) +
m∑

i=1

λ∗i fi(x∗) +
p∑

i=1

ν∗i hi(x∗)

≤
(4)

f0(x∗),

(4): (x∗, λ∗, ν∗) satisfies λ∗ � 0, fi(x∗) ≤ 0, and hi(x∗) = 0.
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...is complementary slackness

From previous slide,
m∑

i=1

λ∗i fi(x∗) = 0, (1)

which is the condition of complementary slackness. This means

λ∗i > 0 =⇒ fi(x∗) = 0,
fi(x∗) < 0 =⇒ λ∗i = 0.

From λi, read off which inequality constraints are strict.
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which linearly
separates one cloud from the other without error.

yi = +1

yi = −1

Data given by {xi, yi}n
i=1, xi ∈ Rp, yi ∈ {−1,+1}
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Linearly separable points
Classify two clouds of points, where there exists a hyperplane which linearly
separates one cloud from the other without error.

yi = +1

yi = −1

Hyperplane equation w>x + b = 0. Linear discriminant given by

ŷ(x) = sign(w>x + b)
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which linearly
separates one cloud from the other without error.

yi = +1

yi = −1

For a datapoint close to the decision boundary, a small change leads to a change in
classification. Can we make the classifier more robust?
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which linearly
separates one cloud from the other without error.

2/‖w‖

w

yi = +1

yi = −1

Smallest distance from each class to the separating hyperplane w>x + b is
called the margin.
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Maximum margin classifier, linearly separable case
This problem can be expressed as follows:

max
w,b

(margin) = max
w,b

(
1
‖w‖

)
subject to {

w>xi + b ≥ 1 i : yi = +1,
w>xi + b ≤ −1 i : yi = −1.

The resulting classifier is

ŷ(x) = sign(w>x + b),

We can rewrite to obtain a quadratic program:

min
w,b

1
2
‖w‖2

subject to
yi(w>xi + b) ≥ 1.
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Maximum margin classifier: with errors allowed

Allow “errors”: points within the margin, or even on the wrong side of the
decision boundary. Ideally:

min
w,b

(
1
2
‖w‖2 + C

n∑
i=1

I[yi
(
w>xi + b

)
< 0]

)
,

where C controls the tradeoff between maximum margin and loss.
Replace with convex upper bound:

min
w,b

(
1
2
‖w‖2 + C

n∑
i=1

h
(
yi
(
w>xi + b

)))
.

with hinge loss,

h(α) = (1− α)+ =

{
1− α, 1− α > 0
0, otherwise.
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Hinge loss

Hinge loss:

h(α) = (1− α)+ =

{
1− α, 1− α > 0
0, otherwise.

α

I(α < 0)

(1− α)+
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Support vector classification

Substituting in the hinge loss, we get a standard regularised empirical risk
minimisation problem - where regularisation naturally arises from the margin
penalty.

min
w,b

(
1
2
‖w‖2 + C

n∑
i=1

h
(
yi
(
w>xi + b

)))
.

Using substitution ξi = h
(
yi
(
w>xi + b

))
, we obtain an equivalent formulation

(standard C-SVM):

min
w,b,ξ

(
1
2
‖w‖2 + C

n∑
i=1

ξi

)
subject to

ξi ≥ 0 yi
(
w>xi + b

)
≥ 1− ξi
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Support vector classification

2/‖w‖

w

yi = +1

yi = −1

ξ/‖w‖
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Duality

As a convex constrained optimization problem with affine constraints in w, b, ξ,
strong duality holds.

minimize f0(w, b, ξ) :=
1
2
‖w‖2 + C

n∑
i=1

ξi

subject to fi(w, b, ξ) := 1− ξi − yi
(
w>xi + b

)
≤ 0, i = 1, . . . , n

fn+i(w, b, ξ) := −ξi ≤ 0, i = 1, . . . , n.
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Support vector classification: Lagrangian

The Lagrangian: L(w, b, ξ, α, λ) =

1
2
‖w‖2 + C

n∑
i=1

ξi +

n∑
i=1

αi
(
1− ξi − yi

(
w>xi + b

))
+

n∑
i=1

λi(−ξi)

with dual variable constraints

αi ≥ 0, λi ≥ 0.

Minimize wrt the primal variables w, b, and ξ.
Derivative wrt w:

∂L
∂w

= w−
n∑

i=1

αiyixi = 0 w =

n∑
i=1

αiyixi.

Derivative wrt b:
∂L
∂b

=
∑

i

yiαi = 0.
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Support vector classification: Lagrangian
Derivative wrt ξi:

∂L
∂ξi

= C − αi − λi = 0 αi = C − λi.

Since λi ≥ 0,
αi ≤ C.

Now use complementary slackness:
Non-margin SVs (margin errors): αi = C > 0:

1 We immediately have yi
(
w>xi + b

)
= 1− ξi.

2 Also, from condition αi = C − λi, we have λi = 0, so ξi ≥ 0
Margin SVs: 0 < αi < C:

1 We again have yi
(
w>xi + b

)
= 1− ξi.

2 This time, from αi = C − λi, we have λi > 0, hence ξi = 0.
Non-SVs (on the correct side of the margin): αi = 0:

1 From αi = C − λi, we have λi > 0, hence ξi = 0.
2 Thus, yi

(
w>xi + b

)
≥ 1
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The support vectors

We observe:
1 The solution is sparse: points which are neither on the margin nor

“margin errors” have αi = 0
2 The support vectors: only those points on the decision boundary, or

which are margin errors, contribute.
3 Influence of the non-margin SVs is bounded, since their weight cannot

exceed C.
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Support vector classification: dual function

Thus, our goal is to maximize the dual,

g(α, λ) =
1
2
‖w‖2 + C

n∑
i=1

ξi +

n∑
i=1

αi
(
1− yi

(
w>xi + b

)
− ξi

)
+

n∑
i=1

λi(−ξi)

=
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj + C
n∑

i=1

ξi −
n∑

i=1

n∑
j=1

αiαjyiyjx>i xj

−b
n∑

i=1

αiyi︸ ︷︷ ︸
0

+

n∑
i=1

αi −
n∑

i=1

αiξi −
n∑

i=1

(C − αi)ξi

=

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj.
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Dual C-SVM

maximize
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj,

subject to the constraints

0 ≤ αi ≤ C,
n∑

i=1

yiαi = 0

This is a quadratic program. From α, obtain the hyperplane with

w =

n∑
i=1

αiyixi

(follows from complementary slackness in the derivation of the dual). Offset b
can be obtained from any of the margin SVs (for which αi ∈ (0,C)):
1 = yi

(
w>xi + b

)
.
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Solution depends on data through inner products only

Dual program

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjx>i xj subject to

{∑n
i=1 αiyi = 0

0 � α � C

only depends on inputs xi through their inner products (similarities) with other
inputs.
Decision function

ŷ(x) = sign(w>x + b) = sign(
n∑

i=1

αiyix>i x + b)

also depends only on the similarity of a test point x to the training points xi.
Thus, we do not need explicit inputs - just their pairwise similarities.
Key property: even if p > n, it is still the case that w ∈ span {xi : i = 1, . . . , n}
(normal vector of the hyperplane lives in the subspace spanned by the
datapoints).
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Beyond Linear Classifiers
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No linear classifier separates red from blue.
Linear separation after mapping to a higher dimensional feature space:

R2 3
(

x(1) x(2)
)>

= x 7→ ϕ(x) =
(

x(1) x(2) x(1)x(2)
)> ∈ R3
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Non-Linear SVM
Consider the dual C-SVM with explicit non-linear transformation
x 7→ ϕ(x):

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjϕ(xi)
>ϕ(xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C
Suppose p = 2, and we would like to introduce quadratic non-linearities,

ϕ(x) =
(

1,
√

2x(1),
√

2x(2),
√

2x(1)x(2),
(

x(1)
)2
,
(

x(2)
)2
)>

.

Then

ϕ(xi)
>ϕ(xj) = 1 + 2x(1)

i x(1)
j + 2x(2)

i x(2)
j + 2x(1)

i x(2)
i x(1)

j x(2)
j

+
(

x(1)
i

)2 (
x(1)

j

)2
+
(

x(2)
i

)2 (
x(2)

j

)2
= (1 + x>i xj)

2

Since only inner products are needed, non-linear transform need not be
computed explicitly - inner product between features can be a simple
function (kernel) of xi and xj: k(xi, xj) = ϕ(xi)

>ϕ(xj) = (1 + x>i xj)
2

d-order interactions can be implemented by k(xi, xj) = (1 + x>i xj)
d

(polynomial kernel). Never need to compute explicit feature expansion
of dimension

(p+d
d

)
where this inner product happens!
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Kernel SVM: Kernel trick

Kernel SVM with k(xi, xj). Non-linear transformation x 7→ ϕ(x) still present,
but implicit (coordinates of the vector ϕ(x) are never computed).

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk(xi, xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C

Prediction? ŷ(x) = sign
(
w>ϕ(x) + b

)
, where w =

∑n
i=1 αiyiϕ(xi) and offset

b obtained from a margin support vector xj with αj ∈ (0,C).
No need to compute w either! Just need

w>ϕ(x) =
n∑

i=1

αiyiϕ(xi)
>ϕ(x) =

n∑
i=1

αiyik(xi, x).

Get offset from

b = yj − w>ϕ(xj) = yj −
n∑

i=1

αiyik(xi, xj)

for any margin support-vector xj (αj ∈ (0,C)).
Fitted a separating hyperplane in a high-dimensional feature space
without ever mapping explicitly to that space.
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