Statistical Data Mining and Machine Learning Hilary Term 2016

Dino Sejdinovic

Department of Statistics
Oxford

Slides and other materials available at:

http://www.stats.ox.ac.uk/~sejdinov/sdmml

Support Vector Machines

These slides are based on Arthur Gretton's UCL course on Advanced Topics in Machine Learning

Optimization and the Lagrangian

Optimization problem on $x \in \mathbb{R}^d$ / primal,

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$ $i = 1, \dots, m$
 $h_j(x) = 0$ $j = 1, \dots r$.

- domain $\mathcal{D} := \bigcap_{i=0}^m \mathrm{dom} f_i \cap \bigcap_{i=1}^r \mathrm{dom} h_i$ (nonempty).
- p*: the (primal) optimal value

Idealy we would want an unconstrained problem

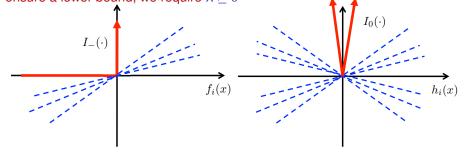
minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x)) + \sum_{j=1}^r I_0(h_j(x))$$
,

where
$$I_{-}(u)= egin{cases} 0, & u \leq 0 \\ \infty, & u > 0 \end{cases}$$
 and $I_{0}(u)= egin{cases} 0, & u = 0 \\ \infty, & u \neq 0 \end{cases}.$

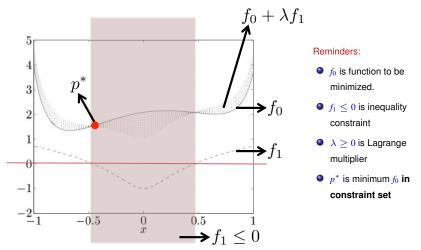
The Lagrangian $L: \mathbb{R}^d \times \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$ is an (easier to optimize) lower bound on the original problem:

$$L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^m \underbrace{\lambda_i f_i(x)}_{\leq I_-(f_i(x))} + \sum_{j=1}^r \underbrace{\nu_j h_j(x)}_{\leq I_0(h_j(x))},$$

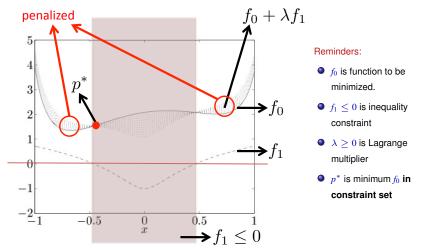
The vectors λ and ν are called **Lagrange multipliers** or **dual variables**. To ensure a lower bound, we require $\lambda \succeq 0$



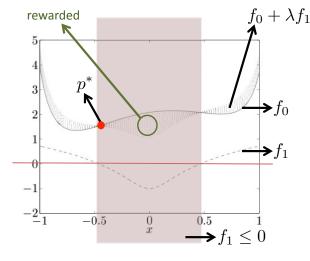
Simplest example: minimize over x the function $L(x, \lambda) = f_0(x) + \lambda f_1(x)$



Simplest example: minimize over x the function $L(x, \lambda) = f_0(x) + \lambda f_1(x)$



Simplest example: minimize over x the function $L(x, \lambda) = f_0(x) + \lambda f_1(x)$



Reminders:

- f₀ is function to be minimized.
- $f_1 \le 0$ is inequality constraint
- p* is minimum f₀ in constraint set

Lagrange dual: lower bound on optimum p^*

The Lagrange dual function: minimize Lagrangian When $\lambda \succeq 0$ and $f_i(x) \leq 0$, Lagrange dual function is

$$g(\lambda, \nu) := \min_{x \in \mathcal{D}} L(x, \lambda, \nu).$$

A dual feasible pair (λ, ν) is a pair for which $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom}(g)$. We will show: for any $\lambda \succeq 0$ and ν ,

$$g(\lambda, \nu) \le f_0(x)$$

wherever

$$\begin{array}{ll}
f_i(x) & \leq 0 \\
h_j(x) & = 0
\end{array}$$

(including at optimal point $f_0(x^*) = p^*$).

Lagrange dual is a lower bound on p^*

Assume \tilde{x} is feasible, i.e. $f_i(\tilde{x}) \leq 0$, $h_i(\tilde{x}) = 0$, $\tilde{x} \in \mathcal{D}$, $\lambda \succeq 0$. Then

$$\sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{r} \nu_i h_i(\tilde{x}) \le 0$$

Thus

$$g(\lambda, \nu) := \min_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^r \nu_i h_i(x) \right)$$

$$\leq f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^r \nu_i h_i(\tilde{x})$$

$$\leq f_0(\tilde{x}).$$

This holds for every feasible \tilde{x} , hence lower bound holds.

Best lower bound: maximize the dual

Best lower bound $g(\lambda, \nu)$ on the optimal solution p^* of original problem: Lagrange dual problem

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$.

Dual feasible: (λ, ν) with $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$. **Dual optimal**: solutions (λ^*, ν^*) to the dual problem, d^* is optimal value. **Weak duality** always holds:

$$\max_{\lambda\succeq 0,\nu} \ \, \underbrace{\min_{x\in\mathcal{D}} L(x,\lambda,\nu)}_{=g(\lambda,\nu)} = d^* \leq p^* = \min_{x\in\mathcal{D}} \ \, \underbrace{\max_{\lambda\succeq 0,\nu} L(x,\lambda,\nu)}_{\substack{\lambda\succeq 0,\nu \text{ otherwise.}}} = \begin{cases} f_0(x) & \text{if constraints satisfied,} \\ \infty & \text{otherwise.} \end{cases}$$

Strong duality: (does not always hold, conditions given later):

$$d^* = p^*$$
.

If strong duality holds: can solve the **dual problem** to find p^* .

How do we know if strong duality holds?

Conditions under which strong duality holds are called **constraint qualifications** (they are sufficient, but not necessary)

(Probably) best known sufficient condition: Strong duality holds if

Primal problem is convex, i.e. of the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ $i = 1, ..., n$
 $Ax = b$

for convex f_0, \ldots, f_m , and

• Slater's condition: there exists a strictly feasible point \tilde{x} , such that $f_i(\tilde{x}) < 0$, i = 1, ..., n (reduces to the existence of any feasible point when inequality constraints are affine, i.e., $Cx \leq d$).

A consequence of strong duality...

Assume primal is equal to the dual. What are the consequences?

- x* solution of original problem (minimum of f₀ under constraints),
- (λ^*, ν^*) solutions to dual

$$\begin{array}{ll} f_0(x^*) & \underset{(\text{assumed})}{=} & g(\lambda^*, \nu^*) \\ & \underset{(\text{g definition})}{=} & \underset{x \in \mathcal{D}}{\min} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right) \\ & \overset{\leq}{\underset{(\text{inf definition})}{\leq}} & f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*) \\ & \overset{\leq}{\underset{(4)}{\leq}} & f_0(x^*), \end{array}$$

(4): (x^*, λ^*, ν^*) satisfies $\lambda^* \succeq 0$, $f_i(x^*) \leq 0$, and $h_i(x^*) = 0$.

...is complementary slackness

From previous slide,

$$\sum_{i=1}^{m} \lambda_i^* f_i(x^*) = 0, \tag{1}$$

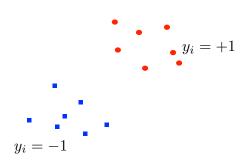
which is the condition of **complementary slackness**. This means

$$\lambda_i^* > 0 \implies f_i(x^*) = 0,$$

 $f_i(x^*) < 0 \implies \lambda_i^* = 0.$

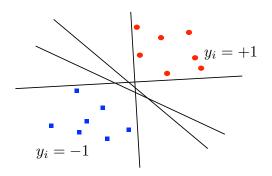
From λ_i , read off which inequality constraints are strict.

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.



Data given by $\{x_i, y_i\}_{i=1}^n$, $x_i \in \mathbb{R}^p$, $y_i \in \{-1, +1\}$

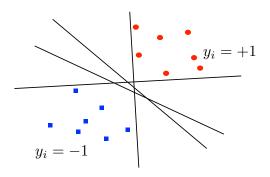
Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.



Hyperplane equation $w^{T}x + b = 0$. Linear discriminant given by

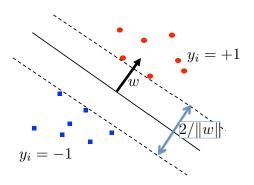
$$\hat{\mathbf{y}}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x} + \mathbf{b})$$

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.



For a datapoint close to the decision boundary, a small change leads to a change in classification. Can we make the classifier more robust?

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.



Smallest distance from each class to the separating hyperplane $w^{T}x + b$ is called the **margin**.

Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

$$\max_{w,b} (\text{margin}) = \max_{w,b} \left(\frac{1}{\|w\|} \right)$$

subject to

$$\begin{cases} w^{\top} x_i + b \ge 1 & i : y_i = +1, \\ w^{\top} x_i + b \le -1 & i : y_i = -1. \end{cases}$$

The resulting classifier is

$$\hat{\mathbf{y}}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x} + \mathbf{b}),$$

We can rewrite to obtain a quadratic program:

$$\min_{w,b} \frac{1}{2} ||w||^2$$

subject to

$$y_i(w^\top x_i + b) \ge 1.$$

Maximum margin classifier: with errors allowed

Allow "errors": points within the margin, or even on the wrong side of the decision boundary. Ideally:

$$\min_{w,b} \left(\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \mathbb{I}[y_i (w^\top x_i + b) < 0] \right),$$

where C controls the tradeoff between maximum margin and loss. Replace with **convex upper bound**:

$$\min_{w,b} \left(\frac{1}{2} ||w||^2 + C \sum_{i=1}^n h \left(y_i \left(w^\top x_i + b \right) \right) \right).$$

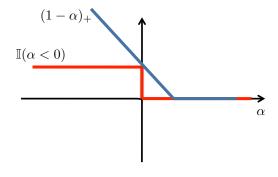
with hinge loss,

$$h(\alpha) = (1 - \alpha)_+ = \begin{cases} 1 - \alpha, & 1 - \alpha > 0 \\ 0, & \text{otherwise.} \end{cases}$$

Hinge loss

Hinge loss:

$$h(\alpha) = (1 - \alpha)_{+} = \begin{cases} 1 - \alpha, & 1 - \alpha > 0 \\ 0, & \text{otherwise.} \end{cases}$$



Support vector classification

Substituting in the hinge loss, we get a standard regularised empirical risk minimisation problem - where regularisation naturally arises from the margin penalty.

$$\min_{w,b} \left(\frac{1}{2} ||w||^2 + C \sum_{i=1}^n h \left(y_i \left(w^\top x_i + b \right) \right) \right).$$

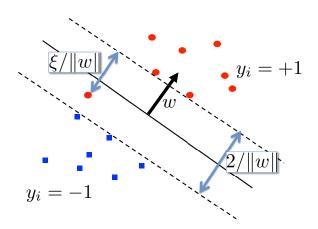
Using substitution $\xi_i = h\left(y_i\left(w^\top x_i + b\right)\right)$, we obtain an equivalent formulation (standard C-SVM):

$$\min_{w,b,\xi} \left(\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \right)$$

subject to

$$\xi_i \ge 0$$
 $y_i \left(w^\top x_i + b \right) \ge 1 - \xi_i$

Support vector classification



Duality

As a convex constrained optimization problem with affine constraints in w, b, ξ , strong duality holds.

minimize
$$f_0(w, b, \xi) := \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

subject to $f_i(w, b, \xi) := 1 - \xi_i - y_i (w^\top x_i + b) \le 0, i = 1, \dots, n$
 $f_{n+i}(w, b, \xi) := -\xi_i \le 0, i = 1, \dots, n.$

Support vector classification: Lagrangian

The Lagrangian: $L(w, b, \xi, \alpha, \lambda) =$

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i \left(1 - \xi_i - y_i \left(w^\top x_i + b\right)\right) + \sum_{i=1}^n \lambda_i (-\xi_i)$$

with dual variable constraints

$$\alpha_i \geq 0, \qquad \lambda_i \geq 0.$$

Minimize wrt the primal variables w, b, and ξ .

Derivative wrt w:

$$\frac{\partial L}{\partial w} = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \qquad w = \sum_{i=1}^{n} \alpha_i y_i x_i.$$

Derivative wrt b:

$$\frac{\partial L}{\partial b} = \sum_{i} y_i \alpha_i = 0.$$

Support vector classification: Lagrangian

Derivative wrt ξ_i :

$$\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \lambda_i = 0 \qquad \alpha_i = C - \lambda_i.$$

Since $\lambda_i \geq 0$,

$$\alpha_i \leq C$$
.

Now use complementary slackness:

Non-margin SVs (margin errors): $\alpha_i = C > 0$:

- We immediately have $y_i(w^Tx_i + b) = 1 \xi_i$.
- ② Also, from condition $\alpha_i = C \lambda_i$, we have $\lambda_i = 0$, so $\xi_i \geq 0$

Margin SVs: $0 < \alpha_i < C$:

- We again have $y_i(w^{\top}x_i + b) = 1 \xi_i$.
- ② This time, from $\alpha_i = C \lambda_i$, we have $\lambda_i > 0$, hence $\xi_i = 0$.

Non-SVs (on the correct side of the margin): $\alpha_i = 0$:

- From $\alpha_i = C \lambda_i$, we have $\lambda_i > 0$, hence $\xi_i = 0$.
- 2 Thus, $y_i(w^{\top}x_i + b) \ge 1$

The support vectors

We observe:

- The solution is sparse: points which are neither on the margin nor "margin errors" have $\alpha_i=0$
- The support vectors: only those points on the decision boundary, or which are margin errors, contribute.
- Influence of the non-margin SVs is bounded, since their weight cannot exceed C.

Support vector classification: dual function

Thus, our goal is to maximize the dual,

$$g(\alpha, \lambda) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i \left(1 - y_i \left(w^\top x_i + b\right) - \xi_i\right)$$

$$+ \sum_{i=1}^n \lambda_i (-\xi_i)$$

$$= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j$$

$$-b \sum_{i=1}^n \alpha_i y_i + \sum_{i=1}^n \alpha_i - \sum_{i=1}^n \alpha_i \xi_i - \sum_{i=1}^n (C - \alpha_i) \xi_i$$

$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j.$$

Dual C-SVM

$$\text{maximize } \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j,$$

subject to the constraints

$$0 \le \alpha_i \le C, \quad \sum_{i=1}^n y_i \alpha_i = 0$$

This is a quadratic program. From α , obtain the hyperplane with

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

(follows from complementary slackness in the derivation of the dual). Offset b can be obtained from any of the margin SVs (for which $\alpha_i \in (0, C)$): $1 = v_i (w^T x_i + b)$.

Solution depends on data through inner products only

Dual program

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j} \qquad \text{subject to} \quad \begin{cases} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ 0 \leq \alpha \leq C \end{cases}$$

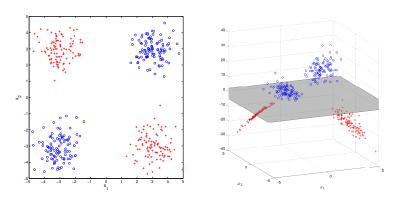
only depends on inputs x_i through their inner products (similarities) with other inputs.

Decision function

$$\hat{\mathbf{y}}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x} + \mathbf{b}) = \operatorname{sign}(\sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i} \mathbf{x}_{i}^{\top} \mathbf{x} + \mathbf{b})$$

also depends only on the similarity of a test point x to the training points x_i . Thus, we do not need explicit inputs - just their pairwise similarities. Key property: even if p > n, it is still the case that $w \in \text{span } \{x_i : i = 1, \dots, n\}$ (normal vector of the hyperplane lives in the subspace spanned by the datapoints).

Beyond Linear Classifiers



- No linear classifier separates red from blue.
- Linear separation after mapping to a higher dimensional feature space:

$$\mathbb{R}^2 \ni \left(\begin{array}{ccc} x^{(1)} & x^{(2)} \end{array} \right)^{\top} = x \ \mapsto \ \varphi(x) = \left(\begin{array}{ccc} x^{(1)} & x^{(2)} & x^{(1)}x^{(2)} \end{array} \right)^{\top} \in \mathbb{R}^3$$

Non-Linear SVM

 Consider the dual C-SVM with explicit non-linear transformation $x \mapsto \varphi(x)$:

$$\max_{\alpha} \quad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(x_{i})^{\top} \varphi(x_{j}) \quad \text{ subject to } \begin{cases} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ 0 \leq \alpha \leq C \end{cases}$$
• Suppose $p = 2$, and we would like to introduce quadratic non-linearities,

$$\varphi(x) = \left(1, \sqrt{2}x^{(1)}, \sqrt{2}x^{(2)}, \sqrt{2}x^{(1)}x^{(2)}, \left(x^{(1)}\right)^2, \left(x^{(2)}\right)^2\right)^\top.$$

Then

$$\varphi(x_i)^{\top} \varphi(x_j) = 1 + 2x_i^{(1)} x_j^{(1)} + 2x_i^{(2)} x_j^{(2)} + 2x_i^{(1)} x_i^{(2)} x_j^{(1)} x_j^{(2)} + \left(x_i^{(1)}\right)^2 \left(x_j^{(1)}\right)^2 + \left(x_i^{(2)}\right)^2 \left(x_j^{(2)}\right)^2 = (1 + x_i^{\top} x_j)^2$$

- Since only inner products are needed, non-linear transform need not be computed explicitly - inner product between features can be a simple function (**kernel**) of x_i and x_i : $k(x_i, x_i) = \varphi(x_i)^{\top} \varphi(x_i) = (1 + x_i^{\top} x_i)^2$
- *d*-order interactions can be implemented by $k(x_i, x_i) = (1 + x_i^{\top} x_i)^d$ (polynomial kernel). Never need to compute explicit feature expansion of dimension $\binom{p+d}{d}$ where this inner product happens!

Kernel SVM: Kernel trick

• Kernel SVM with $k(x_i, x_j)$. Non-linear transformation $x \mapsto \varphi(x)$ still present, but **implicit** (coordinates of the vector $\varphi(x)$ are never computed).

$$\max_{\alpha} \quad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k(x_{i}, x_{j}) \quad \text{ subject to } \quad \begin{cases} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ 0 \leq \alpha \leq C \end{cases}$$

- Prediction? $\hat{y}(x) = \text{sign}(w^{\top}\varphi(x) + b)$, where $w = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)$ and offset b obtained from a margin support vector x_i with $\alpha_i \in (0, C)$.
 - No need to compute w either! Just need

$$w^{\top}\varphi(x) = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)^{\top} \varphi(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x).$$

Get offset from

$$b = y_j - w^{\top} \varphi(x_j) = y_j - \sum_{i=1}^{n} \alpha_i y_i k(x_i, x_j)$$

for any margin support-vector x_i ($\alpha_i \in (0, C)$).

 Fitted a separating hyperplane in a high-dimensional feature space without ever mapping explicitly to that space.