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Supervised Learning Naïve Bayes

Naïve Bayes

Naïve Bayes: another plug-in classifier with a simple generative model - it
assumes all measured variables/features are independent given the label.
Often used in text document classification, e.g. of scientific articles or
emails.
A basic standard model for text classification consists of considering a
pre-specified dictionary of p words and summarizing each document i by
a binary vector xi where

x(j)
i =

{
1 if word j is present in document
0 otherwise.

Presence of the word j is the j-the feature/dimension.
To implement a plug-in classifier, we need a model for the conditional
probability mass function gk(x) = P(X = x|Y = k) for each class
k = 1, ...,K.
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Naïve Bayes

Naïve Bayes is a plug-in classifier which ignores feature correlations1

and assumes:

gk(xi) = P(X = xi|Y = k) =

p∏
j=1

P(X(j) = x(j)
i |Y = k)

=

p∏
j=1

(φkj)
x(j)

i (1− φkj)
1−x(j)

i ,

where we denoted parametrized conditional PMF with
φkj = P(X(j) = 1|Y = k) (probability that j-th word appears in class k
document).
Given dataset, the MLE of the parameters is:

π̂k =
nk

n
, φ̂kj =

∑
i:yi=k x(j)

i

nk
.

1given the class, it assumes each word appears in a document independently of all others
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Naïve Bayes

MLE:

π̂k =
nk

n
, φ̂kj =

∑
i:yi=k x(j)

i

nk
.

A problem with MLE: if the `-th word did not appear in documents
labelled as class k then φ̂k` = 0 and

P(Y = k|X = x with `-th entry equal to 1)

∝ π̂k

p∏
j=1

(
φ̂kj

)x(j) (
1− φ̂kj

)1−x(j)

= 0

i.e. we will never attribute a new document containing word ` to class k
(regardless of other words in it).
This is an example of overfitting.
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Generative Learning

Classifiers we have seen so far are generative: we work with a joint
distribution pX,Y(x, y) over data vectors and labels.
A learning algorithm: construct f : X → Y which predicts the label of X.
Given a loss function L, the risk R of f (X) is

R(f ) = EpX,Y [L(Y, f (X))]

For 0/1 loss in classification, Bayes classifier

fBayes(x) = argmax
k=1,...,K

p(Y = k|x) = argmax
k=1,...,K

pX,Y(x, k)

has the minimum risk (Bayes risk), but is unknown since pX,Y is unknown.
Assume a parameteric model for the joint: pX,Y(x, y) = pX,Y(x, y|θ)
Fit θ̂ = argmaxθ

∑n
i=1 log p(xi, yi|θ) and plug in back to Bayes classifier:

f̂ (x) = argmax
k=1,...,K

p(Y = k|x, θ) = argmax
k=1,...,K

pX,Y(x, k|θ̂).
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Generative vs Discriminative Learning

Generative learning: find parameters which explain all the data
available.

θ̂ = argmax
θ

n∑
i=1

log p(xi, yi|θ)

Examples: LDA, QDA, naïve Bayes.
Makes use of all the data available.
Flexible modelling framework, so can incorporate missing features or
unlabeled examples.
Stronger modelling assumptions, which may not be realistic (Gaussianity,
independence of features).

Discriminative learning: find parameters that aid in prediction.

θ̂ = argmin
θ

1
n

n∑
i=1

L(yi, fθ(xi)) or θ̂ = argmax
θ

n∑
i=1

log p(yi|xi, θ)

Examples: logistic regression, neural nets, support vector machines.
Typically performs better on a given task.
Weaker modelling assumptions: essentially no model on X, only on Y|X.
Can overfit more easily.



Supervised Learning Logistic Regression

Logistic regression

A discriminative classifier. Consider binary classification with
Y = {−1,+1}. Logistic regression uses a parametric model on the
conditional Y|X, not the joint distribution of (X,Y):

p(Y = y|X = x; a, b) =
1

1 + exp(−y(a + b>x))
.

a, b fitted by minimizing the empirical risk with respect to log loss.
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Hard vs Soft classification rules

Consider using LDA for binary classification with Y = {−1,+1}.
Predictions are based on linear decision boundary:

ŷLDA(x) = sign
{

log π̂+1g+1(x|µ̂+1, Σ̂)− log π̂−1g−1(x|µ̂−1, Σ̂)
}

= sign
{

a + b>x
}

for a and b depending on fitted parameters θ̂ = (π̂−1, π̂+1, µ̂−1, µ̂+1,Σ).
Quantity a + b>x can be viewed as a soft classification rule. Indeed, it is
modelling the difference between the log-discriminant functions, or
equivalently, the log-odds ratio:

a + b>x = log
p(Y = +1|X = x; θ̂)

p(Y = −1|X = x; θ̂)
.

f (x) = a + b>x corresponds to the “confidence of predictions” and loss
can be measured as a function of this confidence:

exponential loss: L(y, f (x)) = e−yf (x),
log-loss: L(y, f (x)) = log(1 + e−yf (x)),
hinge loss: L(y, f (x)) = max{1− yf (x), 0}.
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Linearity of log-odds and logistic function

We can treat a and b as parameters in their own right in the model of the
conditional Y|X.

log
p(Y = +1|X = x; a, b)

p(Y = −1|X = x; a, b)
= a + b>x.

Solve explicitly for conditional class probabilities:

p(Y = +1|X = x; a, b) =
1

1 + exp(−(a + b>x))
=: s(a + b>x)

p(Y = −1|X = x; a, b) =
1

1 + exp(+(a + b>x))
= s(−a− b>x)

where s(z) = 1/(1 + exp(−z)) is the logistic function.
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Fitting the parameters of the hyperplane

Consider maximizing the conditional log likelihood:

`(a, b) =

n∑
i=1

log p(Y = yi|X = xi) =

n∑
i=1

log s(yi(a + b>xi)).

Equivalent to minimizing the empirical risk associated with the log loss:

R̂log(fa,b) =
1
n

n∑
i=1

− log s(yi(a + b>xi)) =
1
n

n∑
i=1

log(1 + exp(−yi(a + b>xi)))

over all linear soft classification rules fa,b(x) = a + b>x.
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Logistic Regression

Not possible to find optimal a, b analytically.
For simplicity, absorb a as an entry in b by
appending ’1’ into x vector.
Objective function:

R̂log =
1
n

n∑
i=1

− log s(yix>i b)

Logistic Function

s(−z) = 1− s(z)

∇zs(z) = s(z)s(−z)

∇z log s(z) = s(−z)

∇2
z log s(z) = −s(z)s(−z)

Differentiate wrt b:

∇bR̂log =
1
n

n∑
i=1

−s(−yix>i b)yixi

∇2
bR̂log =

1
n

n∑
i=1

s(yix>i b)s(−yix>i b)xix>i � 0.
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Logistic Regression

Second derivative is positive-definite: objective function is convex and
there is a single unique global minimum.
Many different algorithms can find optimal b, e.g.:

Gradient descent:

bnew = b + ε
1
n

n∑
i=1

s(−yix>i b)yixi

Stochastic gradient descent:

bnew = b + εt
1
|I(t)|

∑
i∈I(t)

s(−yix>i b)yixi

where I(t) is a subset of the data at iteration t, and εt → 0 slowly
(
∑

t εt =∞,
∑

t ε
2
t <∞).

Newton-Raphson:
bnew = b− (∇2

bR̂log)
−1∇bR̂log

This is also called iterative reweighted least squares.
Conjugate gradient, LBFGS and other methods from numerical analysis.
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Logistic Regression vs. LDA

Both have linear decision boundaries and model log-posterior odds as

log
p(Y = +1|X = x)

p(Y = −1|X = x)
= a + b>x

LDA models the marginal density of x as a Gaussian mixture with shared
covariance

g(x) = π−1N (x;µ−1,Σ) + π+1N (x;µ+1,Σ)

and fits the parameters θ = (µ−1, µ+1, π−1, π+1,Σ) by maximizing joint
likelihood

∑n
i=1 p(xi, yi|θ). a and b are then determined from θ.

Logistic regression leaves the marginal density g(x) as an arbitrary
density function, and fits the parameters a,b by maximizing the
conditional likelihood

∑n
i=1 p(yi|xi; a, b).
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Linearly separable data

Assume that the data is linearly separable, i.e. there is a scalar α and a vector
β such that yi(α+ β>xi) > 0, i = 1, . . . , n. Let c > 0. The empirical risk for
a = cα, b = cβ is

R̂log(fa,b) =
1
n

n∑
i=1

log(1 + exp(−cyi(α+ β>xi)))

which can be made arbitrarily close to zero as c→∞, i.e. soft classification
rule becomes ±∞ (overconfidence).
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Multi-class logistic regression

The multi-class/multinomial logistic regression uses the softmax function to
model the conditional class probabilities p (Y = k|X = x; θ), for K classes
k = 1, . . . ,K, i.e.,

p (Y = k|X = x; θ) =
exp

(
w>k x + bk

)∑K
`=1 exp

(
w>` x + b`

) .
Parameters are θ = (b,W) where W = (wkj) is a K × p matrix of weights and
b ∈ RK is a vector of bias terms.
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Logistic Regression: Summary

Makes less modelling assumptions than generative classifiers: often
resulting in better prediction accuracy.
Diverging optimal parameters for linearly separable data: need to
regularise / pull them towards zero.
A simple example of a generalised linear model (GLM), for which there is
a well established statistical theory:

Assessment of fit via deviance and plots,
Well founded approaches to removing insignificant features (drop-in
deviance test, Wald test).
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Regularization

Flexible models for high-dimensional problems require many parameters.
With many parameters, learners can easily overfit.
Regularization: Limit flexibility of model to prevent overfitting.
Add term penalizing large values of parameters θ.

min
θ

R̂(fθ) + λ‖θ‖ρρ = min
θ

1
n

n∑
i=1

L(yi, fθ(xi)) + λ‖θ‖ρρ

where ρ ≥ 1, and ‖θ‖ρ = (
∑p

j=1 |θj|ρ)1/ρ is the Lρ norm of θ (also of
interest when ρ ∈ [0, 1), but is no longer a norm).
Also known as shrinkage methods—parameters are shrunk towards 0.
λ is a tuning parameter (or hyperparameter) and controls the amount
of regularization, and resulting complexity of the model.
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Regularization
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Supervised Learning Regularization

Types of Regularization

Ridge regression / Tikhonov regularization: ρ = 2 (Euclidean norm)
LASSO: ρ = 1 (Manhattan norm)
Sparsity-inducing regularization: ρ ≤ 1 (nonconvex for ρ < 1)
Elastic net regularization: mixed L1/L2 penalty:

min
θ

1
n

n∑
i=1

L(yi, fθ(xi)) + λ
[
(1− α)‖θ‖2

2 + α‖θ‖1
]

http://statweb.stanford.edu/~tibs/lasso.html
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L1 promotes sparsity

Figure : The intersection between the L1 (left) and the L2 (right) ball with a hyperplane.

L1 regularization often leads to optimal solutions with many zeros, i.e., the
regression function depends only on the (small) number of features with
non-zero parameters.

figure from M. Elad, Sparse and Redundant Representations, 2010.
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