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Naive Bayes

@ Naive Bayes is a plug-in classifier which ignores feature correlations’
and assumes:
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where we denoted parametrized conditional PMF with
¢y = P(XY) = 1Y = k) (probability that j-th word appears in class k
document).

@ Given dataset, the MLE of the parameters is:
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'given the class, it assumes each word appears in a document independently of all others

Naive Bayes

@ Naive Bayes: another plug-in classifier with a simple generative model - it
assumes all measured variables/features are independent given the label.

@ Often used in text document classification, e.g. of scientific articles or
emails.

@ A basic standard model for text classification consists of considering a
pre-specified dictionary of p words and summarizing each document i by
a binary vector x; where

) 1 if wordjis present in document
X = ;
! 0 otherwise.

@ Presence of the word j is the j-the feature/dimension.

@ To implement a plug-in classifier, we need a model for the conditional
probability mass function g(x) = P(X = x|Y = k) for each class
k=1,..,K.

Naive Bayes

@ MLE:
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@ A problem with MLE: if the ¢-th word did not appear in documents

labelled as class k then ¢y, = 0 and

P(Y = k|X = x with ¢-th entry equal to 1)
P . R 1—x®
OCﬁkH <¢kj) (1 —¢Ig‘) =0
j=1

i.e. we will never attribute a new document containing word ¢ to class k
(regardless of other words in it).

@ This is an example of overfitting.
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Generative vs Discriminative
Generative Learning

@ Classifiers we have seen so far are generative: we work with a joint
distribution px y(x,y) over data vectors and labels.

@ A learning algorithm: construct f : X — ) which predicts the label of X.
@ Given a loss function L, the risk R of f(X) is

R(f) = Epy , [L(Y,f(X))]
@ For 0/1 loss in classification, Bayes classifier

fBayes(x) = argmax p(Y = k|x) = argmax pyx y(x, k)
k=1,..., K k=1,....K

has the minimum risk (Bayes risk), but is unknown since px y is unknown.

@ Assume a parameteric model for the joint: px y(x,y) = px v (x, y|0)
@ Fitd = argmax, »_._, log p(x;, y;|¢) and plug in back to Bayes classifier:

f(x) = argmax p(Y = k|x, ) = argmax px.y(x, k6).
k=1 k=1 K

..........

Logistic regression

@ A discriminative classifier. Consider binary classification with
Y ={-1,+1}. Logistic regression uses a parametric model on the
conditional Y|X, not the joint distribution of (X, Y):

1
1 +exp(—y(a+bTx))

p(Y =y|X =x;a,b) =

@ a, b fitted by minimizing the empirical risk with respect to log loss.

Generative vs Discriminative
Generative vs Discriminative Learning

@ Generative learning: find parameters which explain all the data
available.

n
6 = argmax Z log p(x;, yi|9)
o =
Examples: LDA, QDA, naive Bayes.
e Makes use of all the data available.
o Flexible modelling framework, so can incorporate missing features or
unlabeled examples.
e Stronger modelling assumptions, which may not be realistic (Gaussianity,
independence of features).
@ Discriminative learning: find parameters that aid in prediction.

. 1 n A n
0 = argmin — Z L(yi,fo(x;)) or 6 = argmax Z log p(vilx:, 0)
L o =

Examples: logistic regression, neural nets, support vector machines.
e Typically performs better on a given task.

e Weaker modelling assumptions: essentially no model on X, only on Y|X.
e Can overfit more easily.

Hard vs Soft classification rules

@ Consider using LDA for binary classification with Y = {—1,+1}.
Predictions are based on linear decision boundary:

YLDA(X) sign {log Frg1 (xlfigr, X) — log 7 1g—1 (x| i1, 2)}

sign {a + bTx}

for « and b depending on fitted parameters 6 = (7_y, 741, fi_1, fip1, ).

@ Quantity a + b " x can be viewed as a soft classification rule. Indeed, it is
modelling the difference between the log-discriminant functions, or
equivalently, the log-odds ratio:

a+b'x=log

@ f(x) = a+ b"x corresponds to the “confidence of predictions” and loss
can be measured as a function of this confidence:
o exponential loss: L(y,f(x)) = e @,
o log-loss: L(y,f(x)) = log(1 4 e™),
e hinge loss: L(y,f(x)) = max{l — yf(x),0}.



Linearity of log-odds and logistic function

@ We can treat a and b as parameters in their own right in the model of the
conditional Y|X.

p(Y =+1|X =x;a,b)

p(Y =—-1|X =x;a,b)

log =a+b'x
@ Solve explicitly for conditional class probabilities:
1
1 +exp(—(a+bTx))
1
1 +exp(+(a+bTx))

where s(z) = 1/(1 + exp(—z)) is the logistic function.
1

.
Y

-8 -6 -4 -2 0 2 4 6 8

Logistic Regression

p(Y =—1|X=x;a,b) = =s(—a—Db"x)

@ Not possible to find optimal a, b analytically.
@ For simplicity, absorb a as an entry in b by

Logistic Function

appending "1’ into x vector. s(—z) =1-s(z)
@ Objective function: V.s(z) = s(z)s(—z)
V:logs(z) = s(—2)
R 1 n
Riog = > —logs(yi b) V2 logs(z) = —s(2)s(—2)

i=1

@ Differentiate wrt b:

R 1<
Vl?Rlog :Z Z —S(—yix,-Tb)yixi
i=1
1 n
ViRiog =~ Z s(yix b)s(—yx; b)xix; = 0.
n
i=1

Fitting the parameters of the hyperplane

@ Consider maximizing the conditional log likelihood:

la,b) = Z logp(Y = yilX =x;) = Zlogs(y,-(a +b'x;)).
i=1 i=1
@ Equivalent to minimizing the empirical risk associated with the log loss:

n

Rog(fus) = = > ~logs(la+bTx)) = > log(1 + exp(~yi(a+bTx)))
i=1

i=1

over all linear soft classification rules £, ,(x) = a + b " x.

— Zero-one loss
— Hinge loss
— Logistic loss
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Logistic Regression

@ Second derivative is positive-definite: objective function is convex and
there is a single unique global minimum.
@ Many different algorithms can find optimal b, e.g.:
o Gradient descent:

n

1
bnew —b - —y; Tb X
-I—en E s(—yix; b)yix

i=1

e Stochastic gradient descent:

" = b+ G,L Z s(—yix; b)yixi
7o 2

where I(z) is a subset of the data at iteration 7, and ¢, — 0 slowly
O, e =00,%, € < oo).
e Newton-Raphson:
b"" = b — (VRiog) ' ViRiog
This is also called iterative reweighted least squares.
e Conjugate gradient, LBFGS and other methods from numerical analysis.



Logistic Regression vs. LDA

@ Both have linear decision boundaries and model log-posterior odds as

p(Y =+1|X =x)
p(Y = —1[X =x)

=a+b'x

log

@ LDA models the marginal density of x as a Gaussian mixture with shared
covariance
g(x) = TN (x5 -1, 2) + TN (X prgr, )

and fits the parameters 6 = (u—1, 41, 7—1, 741, X) by maximizing joint
likelihood >"7_| p(x;,y:|0). a and b are then determined from 6.

@ Logistic regression leaves the marginal density g(x) as an arbitrary
density function, and fits the parameters a,b by maximizing the
conditional likelihood Y"_, p(yi|x;; a, b).

Multi-class logistic regression

The multi-class/multinomial logistic regression uses the softmax function to

model the conditional class probabilities p (Y = k|X = x; 0), for K classes
k=1,...,K,ie.,

exp (w{x + by)
Zle exp (w, x + by) .

Parameters are 6 = (b, W) where W = (wy;) is @ K x p matrix of weights and
b € RX is a vector of bias terms.

p(¥ = kX = x,6) =

Linearly separable data

Assume that the data is linearly separable, i.e. there is a scalar « and a vector
B such that y,(a+3"x;) >0,i=1,...,n. Let c > 0. The empirical risk for
a=ca,b=cpis

Reg(fus) = = > log(1 + exp(—en(a + 5 x)))

i=1

which can be made arbitrarily close to zero as ¢ — oo, i.e. soft classification
rule becomes +oo (overconfidence).

Logistic Regression: Summary

@ Makes less modelling assumptions than generative classifiers: often
resulting in better prediction accuracy.

@ Diverging optimal parameters for linearly separable data: need to
regularise / pull them towards zero.
@ A simple example of a generalised linear model (GLM), for which there is
a well established statistical theory:
o Assessment of fit via deviance and plots,
e Well founded approaches to removing insignificant features (drop-in
deviance test, Wald test).



Regularization Regularization

@ Flexible models for high-dimensional problems require many parameters.
@ With many parameters, learners can easily overfit. 25} .
@ Regularization: Limit flexibility of model to prevent overfitting.
@ Add term penalizing large values of parameters 6.

N
T
L

o 1
min () + AR = min 3 Liso o) + Mol f
where p > 1, and [|0]|, = (3], 10;|7)!/7 is the L, norm of ¢ (also of 1 —
interest when p € [0, 1), but is no longer a norm). :;g
@ Also known as shrinkage methods—parameters are shrunk towards O. 051 —y
@ )\ is a tuning parameter (or hyperparameter) and controls the amount _;z

of regularization, and resulting complexity of the model.

(=}

L, regularization profile for different values of p.

Types of Regularization L, promotes sparsity

@ Ridge regression / Tikhonov regularization: p = 2 (Euclidean norm)
@ LASSO: p = 1 (Manhattan norm)
@ Sparsity-inducing regularization: p < 1 (nonconvex for p < 1)
@ Elastic net regularization: mixed L,/L, penalty:
1 n

min - D Llifolx) + A [(1=a)[0]5 + 0]
i=1 Figure : The intersection between the L, (left) and the L, (right) ball with a hyperplane.

L, regularization often leads to optimal solutions with many zeros, i.e., the
regression function depends only on the (small) number of features with
non-zero parameters.

figure from M. Elad, Sparse and Redundant Representations, 2010.



