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LDA and Dimensionality Reduction
Last Time: Linear Discriminant Analysis

@ LDA: a plug-in classifier assuming multivariate normal conditional density
gr(x) = gr(x|u, X) for each class k sharing the same covariance X:

XlY: k NN(/Jk,Z),

1
(ol ) =(2) P2l 2exp (30— ) T2 - ) )

@ LDA minimizes the squared Mahalanobis distance between x and /i,
offset by a term depending on the estimated class proportion ;:

fipa(x) = argmax 10g7%kgk(x|ﬂk,ﬁ)
ke{l,...,K}
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= argmax |log@y — —fiy X7 fu | + (Z‘ ,uk) X
ke{l,...K} 2

terms depending on k linear in x
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squared Mahalanobis distance



LDA and Dimensionality Reduction
Computations for LDA

@ LDA minimizes the squared Mahalanobis distance between x and /i,
offset by a term depending on the estimated class proportion :

.1 T . .
fipa(x) = argmin E(x—uk)TE Y — i) — log 7.
ke{l,...,K}

squared Mahalanobis distance

@ Thus, LDA classification can be implemented as the following two steps:

(1) §phere the data with respect to the common covariance estimate
Y= % Ef:l Zj:y/:k('x‘:f - :[Lk)(xf - ﬂk)T:

X< D U"x, where 5 =uUDU".

(2) Classify to the closest class mean ji; in the transformed space, modulo the
effect of the estimated class proportions 7.



LDA and Dimensionality Reduction
Fisher's Reduced-Rank Linear Discriminant Analysis

@ In LDA, data vectors are classified based on Mahalanobis distance to
class means.

@ There is K class means and they lie on a (K — 1)-dimensional affine
subspace of ambient space R”: Decision function is unaffected by the
directions orthogonal to this subspace.

@ Projecting data vectors onto the subspace can be viewed as a
dimensionality reduction technique that preserves discriminative
information about the labels {y;}_,: going from R” to R€~! and
potentially K — 1 < p.

@ Just like in PCA, we can visualise the structure in the data by choosing an
appropriate basis for the subspace and projecting data onto it -
immediate visualisation fully describing LDA for K = 3.

@ For K > 3, Fisher proposed to look for the change of basis that finds
directions that best separate the classes - the largest possible spread
of the centroids after sphering.
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LDA projections
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LDA and Dimensionality Reduction
Discriminant Coordinates

@ Find a direction v € R” to maximize the between-class variance relative to
the within-class variance of the projection v X:

vI By
vy
where
S= L5 = ) (= fiy,) T (within-class covariance)

B=1S0 (i —3)(iu — %7 (between-class covariance)

B has rank at most K — 1.
Figure from Hastie, Tibshirani and Friedman, Section 4.3.3
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LDA and Dimensionality Reduction
Discriminant Coordinates

@ To solve for the optimal v, we first reparameterize it as u = 2v.

viBy W (270 BS :u u'Bou

vy ulu ulu

where B* = (£ 2)TBY 2,

@ The maximization over u« is achieved by the first eigenvector u; of B®.

@ We also look at the remaining eigenvectors u; associated to the non-zero
eigenvalues and define the discriminant coordinates as v, = S ru.

@ The v/’s span exactly the affine subspace spanned by (i—lﬂk),’le (these
vectors are given as the “linear discriminants” in the R-function 1da).



Crabs Dataset

library (MASS)
data (crabs)

## create class labels (species+sex)
crabs$spsex=factor (paste (crabs$sp, crabs$sex, sep=""))
ct <- unclass (crabs$spsex)

## LDA on crabs in log-domain
cb.lda <- lda(log(crabs[,4:8]),ct)



Crabs Dataset

> cb.lda
Call:
lda(log(crabs[, 4:8]), ct)

Prior probabilities of groups:
1 2 3 4
0.25 0.25 0.25 0.25

Group means:
FL RW CL CwW BD

1 2.564985 2.475174 3.312685 3.462327 2.441351
2 2.672724 2.443774 3.437968 3.578077 2.560806
3 2.852455 2.683831 3.529370 3.649555 2.733273
4 2.787885 2.489921 3.490431 3.589426 2.701580

Coefficients of linear discriminants:
LD1 LD2 LD3
FL -31.217207 -2.851488 25.719750
RW -9.485303 -24.652581 -6.067361
CL -9.822169 38.578804 -31.679288
CW 65.950295 -21.375951 30.600428
BD -17.998493 6.002432 -14.541487

Proportion of trace:
LD1 LD2 LD3
0.6891 0.3018 0.0091



Crabs Dataset

cb.ldp <- predict (cb.lda)
pairs(cb.ldp$x, pch=ct,col=ct)
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Crabs Dataset

cb.ldpl2 <- cb.ldp$x[,1:2]
egscplot (cb.1ldpl2,pch=ct, col=ct)
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Crabs Dataset

##
##

X

58 NK

##
##

display the decision boundaries

take a lattice of points in LD-space
<- seq(-6,7,0.02)

<- seq(-6,7,0.02)

<- as.matrix(expand.grid(x,y))

<- length (x)

<- length (y)

perform LDA on first two discriminant directions
.lda_new <- lda(cb.ldpl2,ct)

predict onto the grid

.1ldpp <- predict (cb.lda_new, z)$class

classes are 1,2,3 and 4 so set contours
at 1.5,2.5 and 3.5

contour (x,y,matrix (cb.ldpp,m,n),

levels=c(1.5,2.5,3.5),
add=TRUE, d=FALSE, 1ty=2)



LDA and Dimensionality Reduction

Supervised Learning

Crabs Dataset




LDA vs PCA projections
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LDA separates the groups better.
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LDA vs PCA projections
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LDA separates the groups better.
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Quadratic Discriminant Analysis
Conditional densities with different covariances

Given training data with K classes, assume a parametric form for conditional
density gi(x), where for each class

X|Y:k ~ N(uk,Ek),

i.e., instead of assuming that every class has a different mean ;. with the
same covariance matrix > (LDA), we now allow each class to have its own
covariance matrix.

Considering log m;gx(x) as before,

log migr(x) = const+log(m) — = (log [Zk| + (x — pue) S (x — )

N = N =

= const + log(m) — = (log || + sl S ')

1
—|—/L,{Ek_1x - ExTEk_]x
= a+ b,{x + xTepx.

A quadratic discriminant function instead of linear.



Quadratic Discriminant Analysis
Quadratic decision boundaries

Again, by considering that we choose class k over &/,

ay + blx + x"epx — (ap + blx + xTepx)

=a, + bzx—i—xrc*x >0

we see that the decision boundaries of the Bayes Classifier are quadratic
surfaces.

@ The plug-in Bayes Classifer under these assumptions is known as the
Quadratic Discriminant Analysis (QDA) Classifier.



Supervised Learning Quadratic Discriminant Analysis

QDA

LDA classifier:

fuoa(x) = argmin {(x = ) 7" (x — ju) — 2log(r) }

ke{l,...,K}
QDA classifier:
faoa(x) = argmin { (x = ) S (x = fix) — 2log() + log(|5%])}
ke{l,...,K}

for each point x € X where the plug-in estimate /i is as before and 3 is (in
contrast to LDA) estimated for each class k = 1, ..., K separately:

2k

e D (5 — i) (g — )"

N .
Jyi=k



STV IRCe Ml Quadratic Discriminant Analysis

Computing and plotting the QDA boundaries.

##fit QDA
iris.gda <- gda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
<- seq(-4,4,0.02)
as.matrix (expand.grid(x,y),0)
<- length (x)
<- length (y)

58 N
A
|

iris.qgdp <- predict(iris.qgda, z)$class
contour (x,y,matrix(iris.qdp,m,n),
levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



|Quadratic Discriminant Analysis|
Iris example: QDA boundaries
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|Quadratic Discriminant Analysis|
Iris example: QDA boundaries
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Supervised Learning Quadratic Discriminant Analysis

@ Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.

@ If the covariances of different classes are very distinct, QDA will probably
have an advantage over LDA.

@ Parametric models are only ever approximations to the real world,
allowing more flexible decision boundaries (QDA) may seem like a
good idea. However, there is a price to pay in terms of increased
variance and potential overfitting.
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