LDA and Dimensionality Reduction
Last Time: Linear Discriminant Analysis

@ LDA: a plug-in classifier assuming multivariate normal conditional density
gr(x) = gi(x|ux, X) for each class k sharing the same covariance X:
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@ LDA minimizes the squared Mahalanobis distance between x and /i,

offset by a term depending on the estimated class proportion 7;:

x) = argmax logm xA,f]

Slides and other materials available at: floa(x) ke{% ’’’’’ K} & kg (¥l ik, %)
http://www.stats.ox.ac.uk/~sejdinov/sdmml
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terms depending on k linear in x
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squared Mahalanobis distance

LDA and Dimensionality Reduction
Fisher’'s Reduced-Rank Linear Discriminant Analysis

LDA and Dimensionality Reduction
Computations for LDA

@ In LDA, data vectors are classified based on Mahalanobis distance to

@ LDA minimizes the squared Mahalanobis distance between x and /i,
offset by a term depending on the estimated class proportion 7;:
.1 NTa . .
fipa(x) = argmin 5 (x — ) "2 x — ) — log 7.
ke{l,...,K}

squared Mahalanobis distance

@ Thus, LDA classification can be implemented as the following two steps:
(1) Sphere the data with respect to the common covariance estimate

= ll ZkKZI Zj:y-:k('xj - I&’k)(xl - ﬂk)T
g

X< D 2U"x, where 3=UDU".

(2) Classify to the closest class mean fi; in the transformed space, modulo the
effect of the estimated class proportions 7.

class means.

There is K class means and they lie on a (K — 1)-dimensional affine
subspace of ambient space R”: Decision function is unaffected by the
directions orthogonal to this subspace.

Projecting data vectors onto the subspace can be viewed as a
dimensionality reduction technique that preserves discriminative
information about the labels {y;}"_,: going from R” to R¥~! and
potentially K — 1 < p.

Just like in PCA, we can visualise the structure in the data by choosing an

appropriate basis for the subspace and projecting data onto it -
immediate visualisation fully describing LDA for K = 3.

For K > 3, Fisher proposed to look for the change of basis that finds
directions that best separate the classes - the largest possible spread
of the centroids after sphering.



LDA projections

>

Feature 2

Feature 1

Figure by R. Gutierrez-Osuna
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Discriminant Coordinates

@ To solve for the optimal v, we first reparameterize it as u = 2v.

vIBv  uT(272)TBY i

VISy ulu
where B* = (2)TBY 1.
@ The maximization over u is achieved by the first eigenvector «; of B®.

@ We also look at the remaining eigenvectors u; associated to the non-zero
. . . - . . 2 1
eigenvalues and define the discriminant coordinates as v, = X7 2u;.

@ The v/’s span exactly the affine subspace spanned by (3~!)X_, (these
vectors are given as the “linear discriminants” in the R-function 1da).

LDA and Dimensionality Reduction
Discriminant Coordinates

@ Find a direction v € R” to maximize the between-class variance relative to
the within-class variance of the projection v X:

v By
ADRY

where
> = % Z?:](Xi — fy,) (x; — ﬂ}’i)T
B =1 S melje = %) (i = )T
B has rank at most K — 1.

Figure from Hastie, Tibshirani and Friedman, Section 4.3.3

Crabs Dataset

(within-class covariance)

(between-class covariance)

library (MASS)
data (crabs)

## create class labels (species+sex)
crabs$spsex=factor (paste (crabs$sp, crabs$sex, sep=""))
ct <- unclass (crabs$spsex)

## LDA on crabs in log-domain
cb.lda <- lda(log(crabs[,4:8]),ct)



Crabs Dataset Crabs Dataset

cb.ldp <- predict (cb.lda)

> cb.lda
call: pairs (cb.ldp$x, pch=ct, col=ct)
lda(log(crabs([, 4:8]), ct) ©
Prior probabilities of groups: N
1 2 3 4
0.25 0.25 0.25 0.25 LD1 °
Group means: i
FL RW CL CW BD ®
1 2.564985 2.475174 3.312685 3.462327 2.441351 < <%, a
2 2.672724 2.443774 3.437968 3.578077 2.560806 A 4R,
3 2.852455 2.683831 3.529370 3.649555 2.733273 “7 Xf’%ﬁ: x fé '
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Crabs Dataset Crabs Dataset

cb.1ldpl2 <- cb.ldpS$x[,1:2]

egscplot (cb.1ldpl2, pch=ct, col=ct) ## display the decision boundaries

## take a lattice of points in LD-space

x <- seq(-6,7,0.02)
< J . X N y <- seq(-6,7,0.02)
XXX . .
. w % s N z <- as.matrix(expand.grid(x,y))
. x& e /&ﬁﬂg P m <- length (x)
%,
~ - X x xxéi X . ié%%ﬁ N n <- length(y)
x N YN
X é A
e x A 4 N ## perform LDA on first two discriminant directions
Lo
°© N L Ze,m s cb.lda_new <- lda(cb.ldpl2,ct)
£ g os &8 ## predict onto the grid
N Taiy I %% °°; ° ., cb.ldpp <- predict (cb.lda_new, z)S$class
o +#f+ 1#¢++ A o
++ + ¢ AN ° ## classes are 1,2,3 and 4 so set contours
+ | i . ° s ## at 1.5,2.5 and 3.5
. ° o contour (x,y,matrix (cb.ldpp,m, n),
levels=c(l1.5,2.5,3.5),

T T T T T T add=TRUE, d=FALSE, 1ty=2)
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Crabs Dataset LDA vs PCA projections
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LDA vs PCA projections Conditional densities with different covariances

Given training data with K classes, assume a parametric form for conditional
density g, (x), where for each class

< * / g’ oo X|Y:k NN(M/ﬁEk)a
x SR X o x o+
x i amp < X * * - . . . . .
o X s g . e E; N i.e., instead of assuming that every class has a different mean y with the
~ xx owE< % 4 N S *x. % * +oAET H H i
. xS * L . S TR same covariance matrix 3 (LDA), we now allow each class to have its own
x A A x X Fs . .
I e PR IR B, eyt covariance matrix.
o ol §° " co i Considering log m g« (x) as before,
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A quadratic discriminant function instead of linear.



Quadratic decision boundaries QDA

LDA classifier:

. . , .
Again, by considering that we choose class k over i/, fioa(x) = argmin {(x )T (e — ) — Zlog(frk)}
ke{l,....K}

ay + bl x + xTejx — (ap + bhx + xTepx)

=a, +blx+xTcx >0 QDA classifier:

we see that the decision boundaries of the Bayes Classifier are quadratic ) AT R . A
y q faoa(x) = argmin {(x = )5 (x = i) — 2log() + log(I%) }
surfaces. ke{l,...K}

for each point x € X where the plug-in estimate /i is as before and 3 is (in
@ The plug-in Bayes Classifer under these assumptions is known as the contrast to LDA) estimated for each class k = 1,. .., K separately:
Quadratic Discriminant Analysis (QDA) Classifier.

L1 ) .
Se= - > (5 — ) (5 — )"
k .
Jyi=k
Supervised Learning Quadratic Discriminant Analysis Supervised Learning Quadratic Discriminant Analysis

Iris example: QDA boundaries
Computing and plotting the QDA boundaries.

##fit QDA @
iris.gda <- gda(x=iris.data,grouping=ct) .
##create a grid for our plotting surface ° seee o
x <- seq(-6,6,0.02) . D L
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y),0) -
= 0
m <- length (x) T 4
n <- length (y) ;
<
©
a o | .
iris.qgdp <- predict(iris.qgda,z)S$class
contour (x,y,matrix (iris.qgdp,m,n),
levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2) o | '_
o
T T I T T T T
1 2 3 4 5 6 7

Petal.Length



Quadratic Discriminant Analysis
Iris example: QDA boundaries
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Supervised Learning Quadratic Discriminant Analysis

@ Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.

@ If the covariances of different classes are very distinct, QDA will probably
have an advantage over LDA.

@ Parametric models are only ever approximations to the real world,
allowing more flexible decision boundaries (QDA) may seem like a
good idea. However, there is a price to pay in terms of increased
variance and potential overfitting.



