Supervised Learning

Statistical Data Mining and Machine Learning Unsupervised learning:
Hi|ary Term 2016 @ To “extract structure” and postulate hypotheses about data generating
process from “unlabelled” observations xi, .. ., x,.
@ Visualize, summarize and compress data.
Dino Sejdinovig . Supervised learning:
Departmgntf Odetat'St'CS @ In addition to the observations of X, we have access to their response
xior variables / labels Y € V: we observe {(x;,y,)}_,.

@ Types of supervised learning:
o Classification: discrete responses, e.g. Y = {+1,—1} or {1,...,K}.
@ Regression: a numerical value is observed and ) = R.
The goal is to accurately predict the response Y on new observations of X,
i.e., to learn a function f : R” — ), such that f(X) will be close to the true
response Y.

Slides and other materials available at:
http://www.stats.ox.ac.uk/~sejdinov/sdmml

Supervised Learning Loss and Risk Supervised Learning Loss and Risk

Loss function Risk
@ Suppose we made a prediction ¥ = f(X) € ) based on observation of X.
pp : pre fXx)ey _ @ paired observations {(x;,y;)}_, viewed as i.i.d. realizations of a random
@ How good is the prediction? We can use a loss function L: ) x ) — R™ variable (X, Y) on X x ) with joint distribution Pyy
to formalize the quality of the prediction. ’
@ Typical loss functions: Risk
° Misclassification loss (or 0-1 loss) for classification For a given loss function L, the risk R of a learned function f is given by the
(0 fX)=vY expected loss
LY. f(X)) = { 1 fX)#Y ° R(f) =Ep, [L(Y,f(X))] )
where the expectation is with respect to the true (unknown) joint distribution of
@ Squared loss for regression (X,Y).

L(Y,f(X)) = (f(X) = V). - o
@ The risk is unknown, but we can compute the empirical risk:

@ Many other choices are possible, e.g., weighted misclassification loss. R.(f) = EZH:L(Y £(x).
@ In classification, if estimated probabilities p(k) for each class k € ) are -
returned, log-likelihood loss (or log loss) L(Y,p) = —logp(Y) is often
used.



The Bayes Classifier

@ Consider the 0-1 loss.
@ The risk simplifies to:

@ What is the optimal classifier if the joint distribution (X, Y) were known?
@ The density g of X can be written as a mixture of K components
(corresponding to each of the classes):

glx) = Z Tkgk(x),
k=1

where, fork=1,... K,
o P(Y = k) = m are the class probabilities,
@ gi(x) is the conditional density of X, given Y = k.

@ The Bayes classifier fpayes : x — {1,...,K} is the one with minimum risk:

given the observation:
JSBayes (x) =

R(f) =E [L(Y,f(X))] = Ex [Eyx[L(Y,£(X))|X]] =

:/X]E[L(Y,f(XmX = x] g(x)dx

The Bayes Classifier

K

E [L(y, FX))|X = x} =3 L(k.f(x)P(Y = kX = x)

k=1
=1 -P(Y =f(x)|X =x)

@ The risk is minimized by choosing the class with the greatest probability

argmax P(Y = k|X = x)

k=1,..., K
arg max ) = argmax gk (x).
k=1 K D i migi(X)  k=l,..K

@ The functions x — mg,(x) are called discriminant functions. The

@ The minimum risk attained by the Bayes classifier is called Bayes risk.
@ Minimizing E[L(Y,f(X))|X = x| separately for each x suffices.

The Bayes Classifier: Example

of x.

discriminant function with maximum value determines the predicted class

The Bayes Classifier: Example

A simple two Gaussians example: Suppgge X~ N(py, 1), where i = —1 and How do you classify a new observation x if now the standard deviation is still 1
w2 = 1 and assume equal class probabilities 7 = m, = 1/2. for class 1 but 1/3 for class 2?
1 (x+1)2> < (x—1)2>
X) = ——exp | — and X)) = ——exp | — .

Optimal classification is fpayes(x) = arg max

k=1,...K

T8k (X)

1 ifx<0,
2 ifx>0.

Looking at density in a log-scale, optimal classification is to select class 2 if
and only if x € [0.34,2.16].



Plug-in Classification

@ The Bayes Classifier:

arg max mpgr(x).
k=1,....K

N Bayes (x) =

@ We know neither the conditional densities g, nor the class probabilities ;!
@ The plug-in classifier chooses the class

f(x) = arg max 73 84 (x),
k=1,...,K

@ where we plugged in

e estimates 7, of m,andk=1,...,K and
e estimates g (x) of conditional densities,

@ Linear Discriminant Analysis is an example of plug-in classification.

Linear Discriminant Analysis
Linear Discriminant Analysis

@ Expanding the term (x — ) "3~ (x — ),

1
(,u,jzfluk — Z,u,jE*lx + xTE”x)

log mrgi(x) = ¢ + logm — 3

1
=c +logm — Eu,jz_luk + 1 7%
@ Setting a; = log(m) — 211/ £ and by = ¥4y, we obtain

log megr(x) = ¢’ + ar + b x

i.e. a linear discriminant function in x.
@ Consider choosing class k over k':

ap + bl x > ap + bl x & a, +blx>0

where a, = a; — a and b, = by, — by.

@ The Bayes classifier thus partitions X" into regions with the same class
predictions via separating hyperplanes.

@ The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.

Linear Discriminant Analysis
@ LDA is the most well-known and simplest example of plug-in

classification.
@ Assume multivariate normal conditional density g.(x) for each class k:

X‘Y: k NN(Mk,Z),

() =2m) P enp (<55 o) TS - ) )

e each class can have a different mean .,
o all classes share the same covariance X.

@ For an observation x, the k-th log-discriminant function is
1
log mrgr(x) = ¢ + logmy — E(x — ) T2 e — )

The quantity (x — ) "~ (x — ) is the squared Mahalanobis distance
between x and .

@ If © =1, and m, = +, LDA simply chooses the class k with the nearest (in
the Euclidean sense) class mean.

Linear Discriminant Analysis
Parameter Estimation

@ How to estimate the parameters of the LDA model?

@ We can achieve this by maximum likelihood (EM algorithm is not needed
here since the class variables y; are observed!).

@ Letny = #{j : y; = k} be the number of observations in class k.

E(ﬂ-v (/J/k)f:hz) :logp ((xivyi)?:] |7T7 (Mk)kK:la E) = Z]Og Ty 8yi (X,‘)
i=1

K
=c+y > logm - % (1og|2| + (5 — ) 2 (g — uk))

k=1 jiyj=k
ML estimates:
N ng . 1
Ty = ’ e = ;k Z Xj
Jyj=k
1 K
x= ;Z (% — fu) (x5 — fue) "
k=1 jiy=k

@ Note: the ML estimate of X is biased. For an unbiased estimate we need
to divide by n — K.



Iris Dataset Iris Dataset

Just focus on two predictor variables.
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— iris.data <- iris[,3:4]
plot (iris.data,col=ct, pch=20,cex=1.5,cex.lab=1.4)
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data(iris) B R
##save class labels b N £ =
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ct <- unclass (iris$Species) : = .
##pairwise plot Petal.Length « g
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Computing and plotting the LDA boundaries. - .
$#fit LDA
iris.lda <- lda(x=iris.data,grouping=ct) N " cone
##create a grid for our plotting surface . ‘\'\:.. oo
x <- seq(0,8,0.02) S S o
y <- seq(0,3,0.02) T o . B ..::.... -
m <- length (x) E o seevene -
n <- length (y) [ s e »
z <- as.matrix (expand.grid(x,y),0) Sf o ’ o ."..

-

##classes are 1,2 and 3, so set contours at 1.5 and 2.5

iris.ldp <- predict(iris.lda, z)Sclass

contour (x,y,matrix (iris.ldp,m,n), 2 .
levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)
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