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Supervised Learning Supervised Learning

Supervised Learning

Unsupervised learning:
To “extract structure” and postulate hypotheses about data generating
process from “unlabelled” observations x1, . . . , xn.
Visualize, summarize and compress data.

Supervised learning:
In addition to the observations of X, we have access to their response
variables / labels Y ∈ Y: we observe {(xi, yi)}n

i=1.
Types of supervised learning:

Classification: discrete responses, e.g. Y = {+1,−1} or {1, . . . ,K}.
Regression: a numerical value is observed and Y = R.

The goal is to accurately predict the response Y on new observations of X,
i.e., to learn a function f : Rp → Y, such that f (X) will be close to the true
response Y.

Supervised Learning Loss and Risk

Loss function

Suppose we made a prediction Ŷ = f (X) ∈ Y based on observation of X.
How good is the prediction? We can use a loss function L : Y ×Y 7→ R+

to formalize the quality of the prediction.
Typical loss functions:

Misclassification loss (or 0-1 loss) for classification

L(Y, f (X)) =

{
0 f (X) = Y
1 f (X) 6= Y

.

Squared loss for regression

L(Y, f (X)) = (f (X)− Y)2 .

Many other choices are possible, e.g., weighted misclassification loss.
In classification, if estimated probabilities p̂(k) for each class k ∈ Y are
returned, log-likelihood loss (or log loss) L(Y, p̂) = − log p̂(Y) is often
used.

Supervised Learning Loss and Risk

Risk

paired observations {(xi, yi)}n
i=1 viewed as i.i.d. realizations of a random

variable (X,Y) on X × Y with joint distribution PXY

Risk
For a given loss function L, the risk R of a learned function f is given by the
expected loss

R(f ) = EPXY [L(Y, f (X))] ,

where the expectation is with respect to the true (unknown) joint distribution of
(X,Y).

The risk is unknown, but we can compute the empirical risk:

Rn(f ) =
1
n

n∑

i=1

L(yi, f (xi)).



Supervised Learning Bayes Classifier

The Bayes Classifier

What is the optimal classifier if the joint distribution (X,Y) were known?
The density g of X can be written as a mixture of K components
(corresponding to each of the classes):

g(x) =

K∑

k=1

πkgk(x),

where, for k = 1, . . . ,K,
P(Y = k) = πk are the class probabilities,
gk(x) is the conditional density of X, given Y = k.

The Bayes classifier fBayes : x 7→ {1, . . . ,K} is the one with minimum risk:

R(f ) =E [L(Y, f (X))] = EX
[
EY|X[L(Y, f (X))|X]

]

=

∫

X
E [L(Y, f (X))|X = x] g(x)dx

The minimum risk attained by the Bayes classifier is called Bayes risk.
Minimizing E[L(Y, f (X))|X = x] separately for each x suffices.

Supervised Learning Bayes Classifier

The Bayes Classifier

Consider the 0-1 loss.
The risk simplifies to:

E
[
L(Y, f (X))

∣∣X = x
]

=
K∑

k=1

L(k, f (x))P(Y = k|X = x)

=1− P(Y = f (x)|X = x)

The risk is minimized by choosing the class with the greatest probability
given the observation:

fBayes(x) = arg max
k=1,...,K

P(Y = k|X = x)

= arg max
k=1,...,K

πkgk(x)∑K
j=1 πjgj(x)

= arg max
k=1,...,K

πkgk(x).

The functions x 7→ πkgk(x) are called discriminant functions. The
discriminant function with maximum value determines the predicted class
of x.

Supervised Learning Bayes Classifier

The Bayes Classifier: Example
A simple two Gaussians example: Suppose X ∼ N (µY , 1), where µ1 = −1 and
µ2 = 1 and assume equal class probabilities π1 = π2 = 1/2.

g1(x) =
1√
2π

exp
(
− (x + 1)2

2

)
and g2(x) =

1√
2π

exp
(
− (x− 1)2

2

)
.
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Optimal classification is fBayes(x) = arg max
k=1,...,K

πkgk(x) =

{
1 if x < 0,
2 if x ≥ 0.

Supervised Learning Bayes Classifier

The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?
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Looking at density in a log-scale, optimal classification is to select class 2 if
and only if x ∈ [0.34, 2.16].
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Plug-in Classification

The Bayes Classifier:

fBayes(x) = arg max
k=1,...,K

πkgk(x).

We know neither the conditional densities gk nor the class probabilities πk!
The plug-in classifier chooses the class

f (x) = arg max
k=1,...,K

π̂kĝk(x),

where we plugged in
estimates π̂k of πk and k = 1, . . . ,K and
estimates ĝk(x) of conditional densities,

Linear Discriminant Analysis is an example of plug-in classification.

Supervised Learning Linear Discriminant Analysis

Linear Discriminant Analysis

LDA is the most well-known and simplest example of plug-in
classification.
Assume multivariate normal conditional density gk(x) for each class k:

X|Y = k ∼N (µk,Σ),

gk(x) =(2π)−p/2|Σ|−1/2 exp
(
−1

2
(x− µk)

>Σ−1(x− µk)

)
,

each class can have a different mean µk,
all classes share the same covariance Σ.

For an observation x, the k-th log-discriminant function is

logπkgk(x) = c + logπk −
1
2

(x− µk)
>Σ−1(x− µk)

The quantity (x− µk)
>Σ−1(x− µk) is the squared Mahalanobis distance

between x and µk.
If Σ = Ip and πk = 1

K , LDA simply chooses the class k with the nearest (in
the Euclidean sense) class mean.

Supervised Learning Linear Discriminant Analysis

Linear Discriminant Analysis

Expanding the term (x− µk)
>Σ−1(x− µk),

logπkgk(x) = c + logπk −
1
2
(
µ>k Σ−1µk − 2µ>k Σ−1x + x>Σ−1x

)

= c′ + logπk −
1
2
µ>k Σ−1µk + µ>k Σ−1x

Setting ak = log(πk)− 1
2µ
>
k Σ−1µk and bk = Σ−1µk, we obtain

logπkgk(x) = c′ + ak + b>k x

i.e. a linear discriminant function in x.
Consider choosing class k over k′:

ak + b>k x > ak′ + b>k′ x ⇔ a? + b>? x > 0

where a? = ak − ak′ and b? = bk − bk′ .
The Bayes classifier thus partitions X into regions with the same class
predictions via separating hyperplanes.
The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.

Supervised Learning Linear Discriminant Analysis

Parameter Estimation

How to estimate the parameters of the LDA model?
We can achieve this by maximum likelihood (EM algorithm is not needed
here since the class variables yi are observed!).
Let nk = #{j : yj = k} be the number of observations in class k.

`(π, (µk)
K
k=1,Σ) = log p

(
(xi, yi)

n
i=1 |π, (µk)

K
k=1,Σ

)
=

n∑

i=1

logπyi gyi (xi)

=c +

K∑

k=1

∑

j:yj=k

logπk − 1
2

(
log |Σ|+ (xj − µk)

>Σ−1(xj − µk)
)

ML estimates:

π̂k =
nk

n
µ̂k =

1
nk

∑

j:yj=k

xj

Σ̂ =
1
n

K∑

k=1

∑

j:yj=k

(xj − µ̂k)(xj − µ̂k)
>

Note: the ML estimate of Σ is biased. For an unbiased estimate we need
to divide by n− K.
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Iris Dataset

library(MASS)
data(iris)
##save class labels
ct <- unclass(iris$Species)
##pairwise plot
pairs(iris[,1:4],col=ct)
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Supervised Learning Linear Discriminant Analysis

Iris Dataset
Just focus on two predictor variables.

iris.data <- iris[,3:4]
plot(iris.data,col=ct,pch=20,cex=1.5,cex.lab=1.4)
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Supervised Learning Linear Discriminant Analysis

Iris Dataset

Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(0,8,0.02)
y <- seq(0,3,0.02)
m <- length(x)
n <- length(y)
z <- as.matrix(expand.grid(x,y),0)

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z)$class
contour(x,y,matrix(iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)

Supervised Learning Linear Discriminant Analysis

Iris Dataset
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