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Mixture Models

@ Mixture models suppose that our dataset X was created by sampling iid
from K distinct populations (called mixture components).

@ Samples in population k can be modelled using a distribution F,,, with
density f (x| ), where 1y is the model parameter for the k-th component.
For a concrete example, consider a Gaussian with unknown mean 1 and
known diagonal covariance o?1,

_e 1
) = 2|~ exp (= el — )
@ Generative model: fori =1,2,...,n:
o First determine the assignment variable independently for each data item i:
Z; ~ Discrete(ny, . .., Tk) e, P(Zi=k) =m
where mixing proportions / additional model parameters are 7 > 0 for
eachkand >F  m = 1.
o Given the assignment Z; = k, then X; = (X,.(l), . ,Xf”)T is sampled
(independently) from the corresponding k-th component:
Xi|Zi = k ~ f (x| )
@ We observe X; = x; for each i but not Z;’s (latent variables), and would
like to infer the parameters.
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Mixture Models

@ Unknowns to learn given data are

o Parameters: 0 = (m, ui)k_,, where 7y,. .., € [0,1], pu1, . .., ux € R?, and
o Latent variables: z,...,z,.

@ The joint probability over all cluster indicator variables {Z;} are:
(zi=k
pz((zi)izy) HH kZ :
i=1 i=1 k=1
@ The joint density at observations X; = x; given Z; = z; are:

n K

px((x)izi|(Zi Hf (wilez) = [T T el uae) =0

i=1k=1



Mixture Models: Joint pmf/pdf of observed and latent
variables

@ Unknowns to learn given data are
o Parameters: 0 = (m, )b, where y, ...,k € [0,1], ju1, ..., ux € R?, and
o Latent variables: zi, .. ., z,..

@ The joint probability mass function/density’ is:

n K
prz((xi,z0)imy) = pz((@)im ) )px (()im|(Ze = z)imy) = [ ] T (it Geilpue) ) =0
i=1 k=1
@ And the marginal density of x; (resulting model on the observed data) is:

K

ZP i =J,Xi) —Zﬁjf(ximj')-

j=1

"In this course we will treat probability mass functions and densities in the same way for
notational simplicity. Strictly speaking, px,z is a density with respect to the product base measure,
where the base measure is the counting measure for discrete variables and Lebesgue for
continuous variables.
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Mixture Models: Gaussian Mixtures with Unequal
Covariances

figure from Murphy, 2012, Ch. 11.
Here 0 = (m, pu, Ek),'le are all the model parametes and

£l m0) = @m) B e (5 ) T - ).

p() = D mf (xl (s )
k=1



Mixture Models: Responsibility

@ Suppose we know the parameters 0 = (my, )& ,.
@ Z; is a random variable and its conditional distribution given data set X is:

p(Z; =k, x;) _ i (x| )
p(xi) S mf (xil )

Qi =p(Z; =k|x;) =

@ The conditional probability Q; is called the responsibility of mixture
component & for data point x;.

@ These conditionals softly partitions the dataset among the
components: x| Qi = 1.



Mixture Models: Maximum Likehood

@ How can we learn about the parameters 6 = (my, i )X_, from data?

@ Standard statistical methodology asks for the maximum likelihood
estimator (MLE).

@ The goal is to maximise the marginal probability of the data over the
parameters

O = argmaxp(X|6) = argmax HP xil (7, ) =1)
(ﬂ'k HA)k 1i=1

= argmax H Zwkf (x| o)

(T b)iy =1 k=1

= argmax Zlongkf (o] 1) -

(T m)fy =1 k=1

::Z((‘n’k,#k)kK:])



Mixture Models: Maximum Likehood

@ Marginal log-likelihood:

O((mas pa)izy) = log p(X| (i, )iy ZlogZka (oxi i)

@ The gradient w.r.t. p:

n

o (i )
Vi b((m, KZZE—Vklf,»
sl (T o) e=1) 2 Zle ot Gl " og f (i )

=D 0V logf (xilsu)-
i=1

o Difficult to solve, as Q. depends implicitly on fi.



Likelihood Surface for a Simple Example
If latent variables z;’s were all observed, we would have a unimodal likelihood

surface but when we marginalise out the latents, the likelihood surface
becomes multimodal: no unique MLE.

(left) n = 200 data points from a mixture of two 1D Gaussians with

m =m =05 0=5and u; =10, u, = —10.

(right) Observed data log likelihood surface ¢ (u1, 112), all the other parameters
being assumed known.



Mixture Models: Maximum Likehood

Recall we would like to solve:

VME((T(;(, L) k D Z OV, log f(xi|p) =

i=1

@ What if we ignore the dependence of Q. on the parameters?
@ Taking the mixture of Gaussian with covariance oI as example,

n p 1
> 00 (S ostare®) — b~ i)

1 < 1 (< n
= Z Ou(xi — ) = — Z Qiexi — puc (72, Qi) | =0
- 7 N\=

MML? _ 2?21 QirXi
ML? il 2
2?21 Qik




Mixture Models: Maximum Likehood

@ The estimate is a weighted average of data points, where the estimated
mean of cluster k uses its responsibilities to data points as weights.

MML? _ E?:l QirXi
= ==
> iy Ok

@ Makes sense: Suppose we knew that data point x; came from population
zi. Then Q;;, = 1 and Qy = 0 for k # z; and:

M2 Doi—k i
it = S~ avgly g = k)

¢ Zi:z;:k 1
@ Our best guess of the originating population is given by Q.
@ Soft K-Means algorithm?



Mixture Models: Maximum Likehood

@ Gradient w.r.t. mixing proportion ; (including a Lagrange multiplier
A (X, m — 1) to enforce constraint 3, m, = 1).

2 <f((7Tk7Mk k=1) = Zk 1Tk — 1))
_ Z £ (il )

i=1 ] 17Tff(xt|/h)

—Z%*)\—O = ’/TkO(ZQlk

i=1

ShY - >y Qe
? P
Note: D> > 0u=>">" 0 aML? — Zuiz1 2k
k=1 i=1 i=1 k=1 n
N
=1

@ Again makes sense: the estimate is simply (our best guess of) the
proportion of data points coming from population k.



Mixture Models: The EM Algorithm

@ Putting all the derivations together, we get an iterative algorithm for
learning about the unknowns in the mixture model.

@ Start with some initial parameters (W,EO)7 M;EO))K

@ lterate forr=1,2,...:
o Expectation Step:

0" .= w8 Gl
ik T 1 1
z,ﬂ V)

o Maximization Step:

Yo 0 2 L O
0 _2iz i

(n _
Ty n (1)
" > i1 Qi

@ Will the algorithm converge?
@ What does it converge to?
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Example: Mixture of 3 Gaussians

An example with 3 clusters.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 1st E and M step.

Iteration 1
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians
After 2nd E and M step.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 3rd E and M step.

Iteration 3
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 4th E and M step.
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Example: Mixture of 3 Gaussians

After 5th E and M step.
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Probabilistic Unsupervised Learning EM Algorithm
EM Algorithm

@ In a maximum likelihood framework, the objective function is the log
likelihood,

(0) =" tog " mif (xilux)
k=1

i=1
Direct maximisation is not feasible.
@ Consider another objective function F (0, ¢), where ¢ is any probability
distribution on latent variables z, such that:
F(0,q) < £(0) for all 0, g,
max F(0,q) = £(0)
q

F(0,q) is a lower bound on the log likelihood.
@ We can construct an alternating maximisation algorithm as follows:
For = 1,2... until convergence:

q" = argmax F(0'~Y ¢)
q

o0 .— argmax J (0, 61([))
)



Probabilistic Unsupervised Learning EM Algorithm
EM Algorithm

@ The lower bound we use is called the variational free energy.
@ ¢ is a probability mass function for a distribution over z := (z;)"_,.

F(0,q) =E,[logp(X,z|0) —log q(z)]

=E, KZ > Uz = k) (logme + 1ogf(xi|uk>>> ~ log q(z)]

=> 4q(z) [ > 1 =Kk (log +10gf(xi|ﬂk))> —IOgCI(Z)]

Lemma
F(0,q) < £(0) for all ¢ and for all 6.




EM Algorithm - Solving for ¢

Lemma
F(0,q) = £(9) for q(z) = p(z|x,0).

In combination with previous Lemma, this implies that ¢(z) = p(z|x, 6)
maximizes F (6, q) for fixed 0, i.e., the optimal ¢* is simply the conditional
distribution given the data and that fixed 6.

@ In mixture model,

X . P(va‘a) H:l TS xl‘l‘z, Tf xz|#
TE@=00) TS, T mf Gl Hszx,mk

= Hp(Zi|xi,9)
i=1



EM Algorithm - Solving for 6

@ Setting derivative with respect to y to 0,

Zq Z = k)Y, log f (xilpue)

i=1

= Z q(zi = k)Y Jog f (xil ) = 0
i=1

@ This equation can be solved quite easily. E.g., for mixture of Gaussians,

e i 4z = k)X
M = n -
Zi:l ‘I(Zi = k)

@ If it cannot be solved exactly, we can use gradient ascent algorithm:

=t oy q(zi = )V, log f(xi] ).
i=1

@ Similar derivation for optimal 7, as before.



Probabilistic Unsupervised Learning EM Algorithm
EM Algorithm

@ Start with some initial parameters (r\”), M,EO))kK:l.
@ lteratefort=1,2,...:
o Expectation Step:

AT )
l 1
S T )

9" (@ = k) = pla = ki, 0'"") =

o Maximization Step:

0 _ 2@ =k 0 =i 14" (@ = k)i
‘ n CYLia @ =k

Theorem
EM algorithm monotonically increases the log likelihood.

Proof: /(00—1D) = F(OU=D 40) < FOW, 40y < FOO, g+ = £(00).
@ Additional assumption, that V2.7 (0, ¢() are negative definite with
eigenvalues < —e < 0, implies that /) — #* where #* is a local MLE.



Notes on Probabilistic Approach and EM Algorithm

Some good things:
@ Guaranteed convergence to locally optimal parameters.

@ Formal reasoning of uncertainties, using both Bayes Theorem and
maximum likelihood theory.

@ Rich language of probability theory to express a wide range of generative
models, and straightforward derivation of algorithms for ML estimation.
Some bad things:
@ Can get stuck in local minima so multiple starts are recommended.
@ Slower and more expensive than K-means.

@ Choice of K still problematic, but rich array of methods for model
selection comes to rescue.



Flexible Gaussian Mixture Models

@ We can allow each cluster to have its own mean and covariance structure
to enable greater flexibility in the model.
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Probabilistic PCA

@ A probabilistic model related to PCA has the following generative model:
fori=1,2,...,n:
o Letk < n,p be given.
o Let Y, be a (latent) k-dimensional normally distributed random variable with 0
mean and identity covariance:

Yi ~ N(0, L)

e We model the distribution of the ith data point given Y; as a p-dimensional

normal:
Xi ~ N(p+ LY, 0°1)

where the parameters are a vector ;. € R, a matrix L € R”** and o2 > 0.



Probabilistic PCA

PPCA latents
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figures from M. Sahani’s UCL course on Unsupervised Learning



Probabilistic PCA

PPCA latents
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Probabilistic PCA

PPCA latents
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Probabilistic PCA

PPCA latents
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figures from M. Sahani’s UCL course on Unsupervised Learning



_Pobabiistic Unsupenised Leaming BLZEEEIEEIER
Mixture of Probabilistic PCAs

@ We have learnt two types of unsupervised learning techniques:

e Dimensionality reduction, e.g. PCA, MDS, Isomap.
o Clustering, e.g. K-means, linkage and mixture models.

@ Probabilistic models allow us to construct more complex models from
simpler pieces.

@ Mixture of probabilistic PCAs allows both clustering and dimensionality
reduction at the same time.

Z; ~ Discrete(my, . .., Tk)
Y[ ~ N(Ovld)
Xi|Zi =k, Y = y; ~ N (pc + Lyi, 1)

@ Allows flexible modelling of covariance structure without using too many
parameters.

‘Ghahramani and Hinton 1996


http://mlg.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf

Further Reading—Unsupervised Learning

@ Hastie et al, Chapter 14.
@ James et al, Chapter 10.
@ Ripley, Chapter 9.

@ Tukey, John W. (1980). We need both exploratory and confirmatory. The
American Statistician 34 (1): 23-25.
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