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Last time: Biplots, MDS

Biplots: a way to visualise
relationships between principal
components and the original variables.
In its scaled version, projected points
are uncorrelated and equi-variant and
angles between variables correspond
to correlation.
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Multidimensional Scaling: a class of
dimensionality reduction techniques
which find a representation of the data
items x;,...,x, € RPina
lower-dimensional space

21, ...,2, € RF which approximately
preserves the inter-point
(dis)similarities.
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Varieties of MDS

@ Choices of (dis)similarities and stress functions S(Z) lead to different
algorithms.
o Classical/Torgerson: preserves inner products instead - strain function
(cmdscale)

S(Z) = Z(b:j/ — (a7, -2)

i#
o Metric Shephard-Kruskal: preserves distances w.r.t. squared stress

S(Z) = (dy — ||z — zill2)?

i#i
@ Sammon: preserves shorter distances more (sammon)

sz)=3" (dif — ||z — zll2)*

i i
o Non-Metric Shephard-Kruskal: ignores actual distance values, only
preserves ranks (isoMDS)

2
; gd, — |IZi — Zjl|2
S@) = min 2S5l
g increasing Zi# llzi — I3




Example: Language data

Presence or absence of 2867 homologous traits in 87 Indo-European
languages.

> X<-read.table ("http://www.stats.ox.ac.uk/~sejdinov/sdmml/data/cognate.txt™)
> X[1:15,1:16]

V1l v2 v3 v4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16
Irish_A 0o 0 0 o0 1 0 0 0 O 0 0 0 0 0 0 0
Irish_B 0o 0 0 o0 1 0 o0 0 O 0 0 0 0 0 0 0
Welsh_N 0o 0 o0 1 0o o0 o 0 O 0 0 0 0 0 0 0
Welsh_C 0 0 0 1 0o 0 0O O O 0 0 0 0 0 0 0
Breton_List 0o 0 0 o0 1 0 0 0 O 0 0 0 0 0 0 0
Breton_SE 0o 0 o0 o0 1 0 0 0 O 0 0 0 0 0 0 0
Breton_ST 0o 0 0 o0 1 0o o0 0 O 0 0 0 0 0 0 0
Romanian_List o 1 0 o 0 0O 0 0 o0 0 0 0 0 0 0 0
Vlach 0o 1 0 0 o0 o0 o O O 0 0 0 0 0 0 0
Italian 0o 1 0 0 o0 O O O0 O 0 0 0 0 0 0 0
Ladin 0 1 0 0 O O O O O 0 0 0 0 0 0 0
Provencal 0 1 0 0 o0 o 0o 0 O 0 0 0 0 0 0 0
French 0 1 0 0 o0 o o O0 O 0 0 0 0 0 0 0
Walloon 0o 1 0 0 o0 o O O O 0 0 0 0 0 0 0
French_Creole_.C 0 1 0 O 0O O O O O 0 0 0 Q0 0 0 0



Visualisation and Di

nensionality Reduct

Multidimensional Scaling

Example: Language data

Using MDS with non-metric (Sammon) scaling.
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Nonlinear Dimensionality Reduction

Two aims of different varieties of MDS:
@ To visualize the (dis)similarities among items in a dataset, where these
(dis)disimilarities may not have Euclidean geometric interpretations.
@ To perform nonlinear dimensionality reduction.

Many high-dimensional datasets exhibit low-dimensional structure (“live on a
low-dimensional menifold”).

high-dim distribution high-dim samples estimated manifold



Visualisation and Dimensionality Reduction Isomap

Isomap

Isomap is a non-linear dimensional reduction technique based on classical
MDS. Differs from other MDSs as it uses estimates of geodesic distances

between the data points.

A

‘Tenenbaum et al. (2000)


http://isomap.stanford.edu/

Visualisation and Dimensionality Reduction Isomap

Isomap
@ Calculate Euclidean distances dj; for i,j = 1, ..., n between all data points.

@ Form a graph G with n samples as nodes, and edges between the
respective K nearest neighbours (K-Isomap) or between i and j if d;; < e
(e-lsomap).

@ Fori,j linked by an edge, set df = d;. Otherwise, set df to the
shortest-path distance between i and j in G.

@ Run classical MDS using distances df]?.

R function: isomap{vegan}.



Handwritten Characters
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Visualisation and Dimensionality Reduction

Faces

Hf I Nf _Eﬁ | dﬁ
ﬂ amn H__ Hﬁ
m_ _a:g @ =

J nf Q 5 .u_

|

Left-right pose

d Lighting direction

< 7 asod umop-dn



Nonlinear Dimensionality Reduction Techniques

@ Kernel PCA

@ Locally Linear Embedding

@ Laplacian Eigenmaps

@ Maximum Variance Unfolding



http://www.mitpressjournals.org/doi/abs/10.1162/089976698300017467
http://www.cs.nyu.edu/~roweis/lle/
http://www.mitpressjournals.org/doi/abs/10.1162/089976603321780317
http://www.cse.wustl.edu/~kilian/research/manifold/manifold.html

Clustering




Clustering

@ Many datasets consist of multiple heterogeneous subsets.

@ Cluster analysis: Given an unlabelled data, want algorithms that
automatically group the datapoints into coherent subsets/clusters.
Examples:

e market segmentation of shoppers based on browsing and purchase histories

o different types of breast cancer based on the gene expression
measurements

@ discovering communities in social networks

@ image segmentation

W, b

i fs




Types of Clustering

@ Model-based clustering:
e Each cluster is described using a probability model.
@ Model-free clustering:
o Defined by similarity/dissimilarity among instances within clusters.



This Lecture: Two “Model-free” Clustering Methods

@ K-means clustering: a partition-based method into K clusters. Finds
groups such that variation within each group is small. The number of
clusters K is usually fixed beforehand or various values of K are
investigated as a part of the analysis.

@ Hierarchical clustering: nearby data items are joined into clusters, then
clusters into super-clusters forming a hierarchy. Typically, the hierarchy
forms a binary tree (a dendrogram) where each cluster has two
“children” clusters. Dendrogram allows to view the clusterings for each
possible number of clusters, from 1 to n (number of data items).



K-means

Partition-based methods seek to divide data points into a pre-assigned
number of clusters Cy,...,Cx where for all k, k' € {1,...,K},

K
CeC{l,...,n}, CGiNCy =0 Yk #K, Uc={.....n}.
k=1

For each cluster, represent it using a prototype or cluster centroid ;.
We can measure the quality of a cluster with its within-cluster deviance

W(Cy, ) = Z i = p5-

i€eCy

The overall quality of the clustering is given by the total within-cluster

deviance:
K

W= Z W(Cy, px)-

k=1

The overall objective is to choose both the cluster centroids and allocation of
points to minimize the objective function.



K-means

W= Z Z [l — Nk||2 = Z llxi — Nc,”z

k=1ieCy
where ¢; = k if and only if i € C;.

@ Given partition {C}, we can find the optimal prototypes easily by
differentiating W with respect to j:

@7,(*22 Z"l

ieCy lECk

@ Given prototypes, we can easily find the optimal partition by assigning
each data point to the closest cluster prototype:

¢; = argmin [lx; — ][5
k

But joint minimization over both is computationally difficult.



K-means

The K-means algorithm is a widely used method that returns a local optimum
of the objective function W, using iterative and alternating minimization.

@ Randomly initialize K cluster centroids 1, .. ., jik.

@ Cluster assignment: For eachi = 1,...,n, assign each x; to the cluster
with the nearest centroid,

¢; := argmin ||x; — Nng
k

Set C; := {i : ¢; = k} for each k.

@ Move centroids: Set 1, ..., uk to the averages of the new clusters:
oY
U = —— Xi
Mk /| —
i k

© Repeat steps 2-3 until convergence.
@ Return the partition {Cy, ..., Cx} and means py, ..., jik.



K-means

@ The algorithm stops in a finite number of iterations. Between steps 2
and 3, W either stays constant or it decreases, this implies that we never
revisit the same partition. As there are only finitely many partitions, the
number of iterations cannot exceed this.

@ The K-means algorithm need not converge to global optimum.
K-means is a heuristic search algorithm so it can get stuck at suboptimal
configurations. The result depends on the starting configuration. Typically
perform a number of runs from different configurations, and pick the end
result with minimum w.

W=9.184 W=3.418 W=9.264

1.0
L
1.0
L
%
1.0
L
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K-means on Crabs

Looking at the Crabs data again.

library (MASS)
library (lattice)
data (crabs)

splom(~log(crabs[,4:8]1),
pch=as.numeric (crabs[,2]),
col=as.numeric (crabsl[,1]),
main="circle/triangle is gender, black/red is species")



Clustering K-means

K-means on Crabs

circle/triangle is gender, black/red is species

T
30 25 3.0

- 25Bp 25

20 2520 4
1 1

2(2242622 b

L1 2.0 o o

Scatter Plot Matrix




K-means on Crabs

Apply K-means with 2 clusters and plot results.
Crabs.kmeans <- kmeans( log(crabs[,4:8]), 2, nstart=1, iter.max=10)
splom(~log(crabs[,4:8]),

col=Crabs.kmeans$cluster+2,
main="blue/green is cluster; finds big/small")



(OMSC Bl K-means/

K-means on Crabs

blue/green is cluster finds big/small
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K-means on Crabs

‘Whiten’ or ‘sphere’! the data using PCA.

pcp <- princomp( log(crabs[,4:8]) )
Crabs.sphered <- pcp$scores %$x% diag(l/pcp$sdev)
splom( ~Crabs.sphered[,1:3],
col=as.numeric (crabs[,1]),
pch=as.numeric (crabs[,2]),
main="circle/triangle is gender, black/red is species")

And apply K-means again.

Crabs.kmeans <- kmeans (Crabs.sphered, 2, nstart=1, iter.max=20)
splom( ~Crabs.sphered[,1:3],
col=Crabs.kmeans$cluster+2, main="blue/green is cluster")

"Apply a linear transformation so that the covariance matrix is identity.



Clustering K-means

K-means on Crabs

circle/triangle is gender, black/red is species blue/green is cluster
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Scatter Plot Matrix

Discovers gender difference...
But the result depends crucially on sphering the data first!



K-means on Crabs with K =4

colors are clusters

circle/triangle is gender, black/red is species

an [,

Scatter Plot Matrix Scatter Plot Matrix
> table (Crabs.kmeans$cluster,Crabs.class)
Crabs.class
BF BM OF OM

1 3 041 O
239 8 6 0
3 842 0 O
4 0 0 350



K-means Additional Comments

@ Good practice initialization. Randomly pick K training examples
(without replacement) and set i, s, - . ., ux equal to those examples
@ Sensitivity to distance measure. Euclidean distance can be greatly

affected by measurement unit and by strong correlations. Can use
Mahalanobis distance instead:

=3l = /(x5 M1 )

where M is positive semi-definite matrix, e.g. sample covariance.

@ Determination of K. The K-means objective will always improve with
larger number of clusters K. Determination of K requires an additional
regularization criterion. E.g., in DP-means?, use

K
W= ZZ i = 3 + AK

k=1 ieCy

2DP-means paper.


http://www.cs.berkeley.edu/~jordan/papers/kulis-jordan-icml12.pdf

Other partition based methods

Other partition-based methods with related ideas:
e K-medoids?: requires cluster centroids ; to be an observation X
@ K-medians: cluster centroids represented by a median in each
dimension
@ K-modes: cluster centroids represented by a mode estimated from a
cluster

3See also|Affinity propagation.


http://www.psi.toronto.edu/index.php?q=affinity%20propagation

Hierarchical Clustering

@ Hierarchically structured data is ubiquitous (genus, species, subspecies,
individuals...)

@ There are two general strategies for generating hierarchical clusters.
Both proceed by seeking to minimize some measure of overall
dissimilarity.

o Agglomerative / Bottom-Up / Merging
o Divisive / Top-Down / Splitting

@ Higher level clusters are created by merging clusters at lower levels. This

process can easily be viewed by a tree/dendrogram.

@ Avoids specifying how many clusters are appropriate.

hclust, agnes{cluster}



EU Indicators Data

6 Economic indicators for EU countries in 2011.

> eu<-read.csv(
'http://www.stats.ox.ac.uk/~sejdinov/sdmml/data/eu_indicators.csv’,sep=" ')
> eull:15,]
Countries abbr CPI UNE INP BOP PRC UN_perc

1 Belgium BE 116.03 4.77 125.59 908.6 6716.5 -1.6
2 Bulgaria BG 141.20 7.31 102.39 27.8 1094.7 3.5
3 CzechRep. Cz 116.20 4.88 119.01 -277.9 2616.4 -0.6
4 Denmark DK 114.20 6.03 88.20 1156.4 7992.4 0.5
5 Germany DE 111.60 4.63 111.30 499.4 6774.6 -1.3
6 Estonia EE 135.08 9.71 111.50 153.4 2194.1 -7.7
7 Ireland IE 106.80 10.20 111.20 -166.5 6525.1 2.0
8 Greece EL 122.83 11.30 78.22 -764.1 5620.1 6.4
9 Spain ES 116.97 15.79 83.44 -280.8 4955.8 0.7
10 France FR 111.55 6.77 92.60 -337.1 6828.5 -0.9
11 Italy IT 115.00 5.05 87.80 -366.2 5996.6 -0.5
12 Cyprus CY 116.44 5.14 86.91 -1090.6 5310.3 -0.4
13 Latvia LV 144.47 12.11 110.39 42.3 1968.3 -3.6
14 Lithuania LT 135.08 11.47 114.50 -77.4 2130.6 -4.3
15 Luxembourg LU 118.19 3.14 85.51 2016.5 10051.6 -3.0


http://onlinelibrary.wiley.com/doi/10.1002/wics.1200/abstract

EU Indicators Data

dat<-scale(eul[,3:8])
rownames (dat) <-eu$Countries
biplot (princomp (dat))
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Visualising Hierarchical Clustering

> hc<-hclust (dist (dat)) > library (ape)
> plot (hc, hang=-1) > plot (as.phylo(hc), type = "fan")

Cluster Dendrogram
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Visualising Hierarchical Clustering

Levels in the dendrogram represent a dissimilarity between examples.

@ Tree dissimilarity ¢/ = minimum height in the tree at which examples i
and j belong to the same cluster.

@ ultrametric (stronger than triangle) inequality:

dj; < max{d},d;}.

@ Hierarchical clustering can be interpreted as an approximation of a given
dissimilarity d;; by an ultrametric dissimilarity.



Clustering Hierarchical Clustering

Measuring Dissimilarity Between Clusters

To join clusters C; and C; into super-clusters, we need a way to measure the
dissimilarity D(C;, C;) between them.

‘/‘ -

complete linkage: d(z2, x5)




Measuring Dissimilarity Between Clusters

To join clusters C; and C; into super-clusters, we need a way to measure the
dissimilarity D(C;, C;) between them.

(a) Single Linkage: elongated, loosely connected clusters

D(C;,C;) = min (d(x,y)|x € C;,y € C;)
Xy

(b) Complete Linkage: compact clusters, relatively similar objects can
remain separated at high levels

D(C;, Cj) = max (d(x,y)|x € Ci,y € Cj)
Xy

(c) Average Linkage: tries to balance the two above, but affected by the
scale of dissimilarities

D(C;, Cj) = avg, , (d(x,y)lx € Ci,y € ())



Hierarchical Clustering on Artificial Dataset
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Hierarchical Clustering on Artificial Dataset

dat=xclara #3000 x 2
library (cluster)

#plot the data
plot (dat, type="n")
text (dat, labels=row.names (dat) )

plot (agnes (dat,method="single"))
plot (agnes (dat, method="complete"))
plot (agnes (dat, method="average"))



Hierarchical Clustering on Artificial Dataset

Dendrogram of agnes(x = dat, method = "single")




Clustering Hierarchical Clustering




Hierarchical Clustering on Artificial Dataset

agnes(x = dat, method = "average")




Using Dendrograms

o Different ways of measuring dissimilarity result in different trees.

@ Dendrograms are useful for getting a feel for the structure of
high-dimensional data though they don’t represent distances between
observations well.

@ Dendrograms show hierarchical clusters with respect to increasing values
of dissimilarity between clusters, cutting a dendrogram horizontally at a
particular height partitions the data into disjoint clusters which are
represented by the vertical lines it intersects. Cutting horizontally
effectively reveals the state of the clustering algorithm when the
dissimilarity value between clusters is no more than the value cut at.

@ Despite the simplicity of this idea and the above drawbacks, hierarchical
clustering methods provide users with interpretable dendrograms that
allow clusters in high-dimensional data to be better understood.
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