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Bayesian Learning Review of Bayesian Inference

Maximum Likelihood Principle

A generative model for training data D = {(xi, yi)}n
i=1 given a parameter

vector θ:
yi ∼ (π1, . . . , πK), x|yi ∼ gyi(x) = p(x|φyi)

k-th class conditional density assumed to have a parametric form for
gk(x) = p(x|φk) and all parameters are given by
θ = (π1, . . . , πK ;φ1, . . . , φK)
Generative process defines the likelihood function: the joint distribution
of all the observed data p(D|θ) given a parameter vector θ .
Process of generative learning consists of computing the MLE θ̂ of θ
based on D:

θ̂ = argmax
θ∈Θ

p(D|θ)

We then use a plug-in approach to perform classification

fθ̂(x) = argmax
k∈{1,...,K}

Pθ̂(Y = k|X = x) = argmax
k∈{1,...,K}

π̂kp(x|φ̂k)∑K
j=1 π̂jp(x|φ̂j)
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The Bayesian Learning Framework

Being Bayesian: treat parameter vector θ as a random variable:
process of learning is then computation of the posterior distribution
p(θ|D).
In addition to the likelihood p(D|θ) need to specify a prior distribution
p(θ).
Posterior distribution is then given by the Bayes Theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)

Likelihood: p(D|θ)
Prior: p(θ)

Posterior: p(θ|D)

Marginal likelihood: p(D) =
∫

Θ
p(D|θ)p(θ)dθ

Summarizing the posterior:
Posterior mode: θ̂MAP = argmaxθ∈Θ p(θ|D) (maximum a posteriori).
Posterior mean: θ̂mean = E [θ|D].
Posterior variance: Var[θ|D].
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Simple Example: Coin Tosses

A simple example: We have a coin with probability φ of coming up heads.
Model coin tosses as i.i.d. Bernoullis, 1 =head, 0 =tail.
Estimate φ given a dataset D = {xi}n

i=1 of tosses.

p(D|φ) = φn1(1− φ)n0

with nj =
∑n

i=1 1(xi = j).
Maximum Likelihood estimate:

φ̂ML =
n1

n

Bayesian approach: treat the unknown parameter φ as a random
variable. Simple prior: φ ∼ Uniform[0, 1], i.e., p(φ) = 1 for φ ∈ [0, 1].
Posterior distribution:

p(φ|D) =
p(D|θ)p(θ)

p(D)
=
φn1 (1− φ)n0 · 1

p(D)
, p(D) =

∫ 1

0
φn1 (1− φ)n0 dφ =

(n + 1)!

n1!n0!

Posterior is a Beta(n1 + 1, n0 + 1) distribution: φ̂mean = n1+1
n+2 .
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Simple Example: Coin Tosses
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Posterior becomes behaves like the ML estimate as dataset grows and is
peaked at true value φ∗ = .7.
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Simple Example: Coin Tosses

All Bayesian reasoning is based on the posterior distribution.
Posterior mode: φ̂MAP = n1

n

Posterior mean: φ̂mean = n1+1
n+2

Posterior variance: Var[φ|D] = 1
n+3 φ̂

mean(1− φ̂mean)

(1− α)-credible regions: (l, r) ⊂ [0, 1] s.t.
∫ r

l p(θ|D)dθ = 1− α.

Consistency: Assuming that the true parameter value φ∗ is given a
non-zero density under the prior, the posterior distribution concentrates
around the true value as n→∞.
Rate of convergence?
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Simple Example: Coin Tosses

The posterior predictive distribution is the conditional distribution of
xn+1 given D = {xi}n

i=1:

p(xn+1|D) =

∫ 1

0
p(xn+1|φ,D)p(φ|D)dφ

=

∫ 1

0
p(xn+1|φ)p(φ|D)dφ

= (φ̂mean)xn+1(1− φ̂mean)1−xn+1

We predict on new data by averaging the predictive distribution over the
posterior. Accounts for uncertainty about φ.



Bayesian Learning Review of Bayesian Inference

Simple Example: Coin Tosses

In this example, the posterior distribution has a known analytic form and
is in the same Beta family as the prior: Uniform[0, 1] ≡ Beta(1, 1).
An example of a conjugate prior.
A Beta distribution Beta(a, b) with parameters a, b > 0 is an exponential
family distribution with density

p(φ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
φa−1(1− φ)b−1

where Γ(t) =
∫∞

0 ut−1e−udu is the gamma function.
If the prior is φ ∼ Beta(a, b), then the posterior distribution is

p(φ|D, a, b) =∝ φa+n1−1(1− φ)b+n0−1

so is Beta(a + n1, b + n0).
Hyperparameters a and b are pseudo-counts, an imaginary initial
sample that reflects our prior beliefs about φ.
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Beta Distributions
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Bayesian Inference on the Categorical Distribution

Suppose we observe D = {yi}n
i=1 with yi ∈ {1, . . . ,K}, and model them as

i.i.d. with pmf π = (π1, . . . , πK):

p(D|π) =

n∏
i=1

πyi =

K∏
k=1

πnk
k

with nk =
∑n

i=1 1(yi = k) and πk > 0,
∑K

k=1 πk = 1.
The conjugate prior on π is the Dirichlet distribution Dir(α1, . . . , αK) with
parameters αk > 0, and density

p(π) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k

on the probability simplex {π : πk > 0,
∑K

k=1 πk = 1}.
The posterior is also Dirichlet Dir(α1 + n1, . . . , αK + nK).
Posterior mean is

π̂mean
k =

αk + nk∑K
j=1 αj + nj

.
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Dirichlet Distributions

(A) Support of the Dirichlet density for K = 3.
(B) Dirichlet density for αk = 10.
(C) Dirichlet density for αk = 0.1.
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Naïve Bayes

Return to the spam classification example with two-class naïve Bayes

p(xi|φk) =

p∏
j=1

φ
x(j)

i
kj (1− φkj)

1−x(j)
i .

Set nk =
∑n

i=1 1{yi = k}, nkj =
∑n

i=1 1(yi = k, x(j)
i = 1). MLE is:

π̂k =
nk

n
, φ̂kj =

∑
i:yi=k x(j)

i

nk
=

nkj

nk
.

One problem: if the `-th word did not appear in documents labelled as
class k then φ̂k` = 0 and

P(Y = k|X = x with `-th entry equal to 1)

∝ π̂k

p∏
j=1

(
φ̂kj

)x(j) (
1− φ̂kj

)1−x(j)

= 0

i.e. we will never attribute a new document containing word ` to class k
(regardless of other words in it).
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Bayesian Inference on Naïve Bayes model

Under the Naïve Bayes model, the joint distribution of labels
yi ∈ {1, . . . ,K} and data vectors xi ∈ {0, 1}p is

n∏
i=1

p(xi, yi) =

n∏
i=1

K∏
k=1

πk

p∏
j=1

φ
x(j)

i
kj (1− φkj)

1−x(j)
i

1(yi=k)

=

K∏
k=1

πnk
k

p∏
j=1

φ
nkj
kj (1− φkj)

nk−nkj

where nk =
∑n

i=1 1(yi = k), nkj =
∑n

i=1 1(yi = k, x(j)
i = 1).

For conjugate prior, we can use Dir((αk)
K
k=1) for π, and Beta(a, b) for φkj

independently.
Because the likelihood factorizes, the posterior distribution over π and
(φkj) also factorizes, and posterior for π is Dir((αk + nk)

K
k=1), and for φkj is

Beta(a + nkj, b + nk − nkj).
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Bayesian Inference on Naïve Bayes model

Given D = {(xi, yi)}n
i=1, want to predict a label ỹ for a new document x̃.

We can calculate

p(x̃, ỹ = k|D) = p(ỹ = k|D)p(x̃|ỹ = k,D)

with

p(ỹ = k|D) =
αk + nk∑K
l=1 αl + n

p(x̃(j) = 1|ỹ = k,D) =
a + nkj

a + b + nk

Predicted class is

p(ỹ = k|x̃,D) =
p(ỹ = k|D)p(x̃|ỹ = k,D)

p(x̃|D)

Compared to ML plug-in estimator, pseudocounts help to “regularize”
probabilities away from extreme values.
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Bayesian Learning and Regularization

Consider a Bayesian approach to logistic regression: introduce a
multivariate normal prior for weight vector w ∈ Rp, and a uniform
(improper) prior for offset b ∈ R. The prior density is:

p(b,w) = 1 · (2πσ2)−
p
2 exp

(
− 1

2σ2 ‖w‖
2
2

)
The posterior is

p(b,w|D) ∝ exp

(
− 1

2σ2 ‖w‖
2
2 −

n∑
i=1

log(1 + exp(−yi(b + w>xi)))

)
The posterior mode is equivalent to minimizing the L2-regularized
empirical risk.
Regularized empirical risk minimization is (often) equivalent to having a
prior and finding a MAP estimate of the parameters.

L2 regularization - multivariate normal prior.
L1 regularization - multivariate Laplace prior.

From a Bayesian perspective, the MAP parameters are just one way to
summarize the posterior distribution.
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Bayesian Model Selection

A modelM with a given set of parameters θM consists of both the
likelihood p(D|θM) and the prior distribution p(θM).

One example model would consist of all Gaussian mixtures with K
components and equal covariance (LDA): θLDA = (π1, . . . , πK ;µ1, . . . , µK ; Σ),
along with a prior on θ; another would allow different covariances (QDA)
θQDA = (π1, . . . , πK ;µ1, . . . , µK ; Σ1, . . . ,ΣK).

The posterior distribution

p(θM|D,M) =
p(D|θM,M)p(θM|M)

p(D|M)

Marginal probability of the data underM (Bayesian model evidence):

p(D|M) =

∫
Θ

p(D|θM,M)p(θM|M)dθ

Compare models using their Bayes factors p(D|M)
p(D|M′)
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Bayesian Occam’s Razor

Occam’s Razor: of two explanations adequate to explain the same set of
observations, the simpler should be preferred.

p(D|M) =

∫
Θ

p(D|θM,M)p(θM|M)dθ

Model evidence p(D|M) is the probability that a set of randomly selected
parameter values inside the model would generate dataset D.
Models that are too simple are unlikely to generate the observed dataset.
Models that are too complex can generate many possible dataset, so
again, they are unlikely to generate that particular dataset at random.
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Bayesian model comparison: Occam’s razor at work
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Bayesian Learning – Discussion

Use probability distributions to reason about uncertainties of parameters
(latent variables and parameters are treated in the same way).
Model consists of the likelihood function and the prior distribution on
parameters: allows to integrate prior beliefs and domain knowledge.
Bayesian computation — most posteriors are intractable, and posterior
needs to be approximated by:

Monte Carlo methods (MCMC and SMC).
Variational methods (variational Bayes, belief propagation etc).

Prior usually has hyperparameters, i.e., p(θ) = p(θ|ψ). How to choose ψ?
Be Bayesian about ψ as well — choose a hyperprior p(ψ) and compute
p(ψ|D).
Maximum Likelihood II — ψ̂ = argmaxψ∈Ψ p(D|ψ).

p(D|ψ) =

∫
p(D|θ)p(θ|ψ)dθ

p(ψ|D) =
p(D|ψ)p(ψ)

p(D)
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Bayesian Learning – Further Reading

Videolectures by Zoubin Ghahramani:
Bayesian Learning and Graphical models.

Gelman et al. Bayesian Data Analysis.
Kevin Murphy. Machine Learning: a Probabilistic Perspective.
E. T. Jaynes. Probability Theory: The Logic of Science.

http://videolectures.net/mlss05us_ghahramani_bl/
http://videolectures.net/mlss09uk_ghahramani_gm/
http://www.stat.columbia.edu/~gelman/book/
http://www.cs.ubc.ca/~murphyk/MLbook/
http://shawnslayton.com/open/Probability%20book/book.pdf?


Bayesian Learning Gaussian Processes

Gaussian Processes
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Parametric vs Nonparametric models

Parametric models have a fixed finite number of parameters, regardless
of the dataset size. In the Bayesian setting, given the parameter vector θ,
the predictions are independent of the data D.

p(x̃, θ|D) = p(θ|D)p(x̃|θ)

Parameters can be thought of as a data summary: communication
channel flows from data to the predictions through the parameters.
Model-based learning (e.g., mixture of K multivariate normals)

Nonparametric models allow the number of “parameters” to grow with
the dataset size. Alternatively, predictions depend on the data (and the
hyperparameters).
Memory-based learning (e.g., kernel density estimation)
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Regression
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We are given a dataset D = {(xi, yi)}n
i=1, xi ∈ Rp, yi ∈ R.

Regression: learn the underlying real-valued function f (x).
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Different Flavours of Regression

We can model response yi as a noisy version of the underlying function f
evaluated at input xi:

yi|f , xi ∼ N (f (xi), σ
2)

Appropriate loss: L(y, f (x)) = (y− f (x))2

Frequentist Parametric approach: model f as fθ for some parameter
vector θ. Fit θ by ML / ERM with squared loss (linear regression).
Frequentist Nonparametric approach: model f as the unknown
parameter taking values in an infinite-dimensional space of functions. Fit
f by regularized ML / ERM with squared loss (kernel ridge regression)
Bayesian Parametric approach: model f as fθ for some parameter
vector θ. Put a prior on θ and compute a posterior p(θ|D) (Bayesian linear
regression).
Bayesian Nonparametric approach: treat f as the random variable
taking values in an infinite-dimensional space of functions. Put a prior
over functions f ∈ F , and compute a posterior p(f |D) (Gaussian Process
regression).
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Just work with the function values at
the inputs f = (f (x1), . . . , f (xn))>

What properties of the function can
we incorporate?

Multivariate normal prior on f:

f ∼ N (0,K)

Use a kernel function k to define K:

Kij = k(xi, xj)

Expect regression functions to be
smooth: If x and x′ are close by, then
f (x) and f (x′) have similar values, i.e.
strongly correlated.(

f (x)
f (x′)

)
∼ N

((
0
0

)
,

(
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

))
In particular, want
k(x, x′) ≈ k(x, x) = k(x′, x′).

The prior p(f) encodes our prior
knowledge about the function.
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Model:

f ∼ N (0,K)

yi|fi ∼ N (fi, σ2)
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Gaussian Processes

What does a multivariate normal prior mean?
Imagine x forms an infinitesimally dense grid of data space. Simulate
prior draws

f ∼ N (0,K)

Plot fi vs xi for i = 1, . . . , n.
The corresponding prior over functions is called a Gaussian Process
(GP): any finite number of evaluations of which follow a Gaussian
distribution.
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http://www.gaussianprocess.org/

http://www.gaussianprocess.org/
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Gaussian Processes

Different kernels lead to different function characteristics.

Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006.

http://learning.eng.cam.ac.uk/carl/talks/gpnt06.pdf
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Gaussian Processes

f|x ∼ N (0,K)

y|f ∼ N (f, σ2I)

Posterior distribution:

f|y ∼ N (K(K + σ2I)−1y,K−K(K + σ2I)−1K)

Posterior predictive distribution: Suppose x′ is a test set. We can extend
our model to include the function values f′ at the test set:(

f
f′

)
|x, x′ ∼ N

((
0
0

)
,

(
Kxx Kxx′

Kx′x Kx′x′

))
y|f ∼ N (f, σ2I)

where Kxx′ is matrix with (i, j)-th entry k(xi, x′j).
Some manipulation of multivariate normals gives:

f′|y ∼ N
(
Kx′x(Kxx + σ2I)−1y,Kx′x′ −Kx′x(Kxx + σ2I)−1Kxx′

)
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Gaussian Processes
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GP regression demo: http://www.tmpl.fi/gp/

http://www.tmpl.fi/gp/


Summary

A whirlwind journey through data mining and machine learning
techniques:

Unsupervised learning: PCA, MDS, Isomap, Hierarchical clustering,
K-means, mixture modelling, EM algorithm.
Supervised learning: LDA, QDA, naïve Bayes, logistic regression, SVMs,
kernel methods, kNN, deep neural networks, Gaussian processes, decision
trees, ensemble methods: random forests, bagging, stacking, dropout and
boosting.
Conceptual frameworks: prediction, performance evaluation,
generalization, overfitting, regularization, model complexity, validation and
cross-validation, bias-variance tradeoff.
Theory: decision theory, statistical learning theory, convex optimization,
Bayesian vs. frequentist learning, parametric vs non-parametric learning.

Further resources:
Machine Learning Summer Schools, videolectures.net.
Conferences: NIPS, ICML, UAI, AISTATS.
Mailing list: ml-news.

Thank You!

http://videolectures.net/site/search/?q=mlss
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