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Maximum Likelihood Principle The Bayesian Learning Framework

@ A generative model for training data D = {(x;,y;)}\_, given a parameter

vector 0 @ Being Bayesian: treat parameter vector ¢ as a random variable:

rocess of learning is then computation of the posterior distribution
v (), i~ g, () = plaldy,) D, ? P P

@ k-th class conditional density assumed to have a parametric form for @ In addition to the likelihood p(D|¢) need to specify a prior distribution

g:(x) = p(x|¢x) and all parameters are given by p@. _
0= (m,...,mk;b1s- .., k) @ Posterior distribution is then given by the Bayes Theorem:
@ Generative process defines the likelihood function: the joint distribution (DI0)p(6)
of all the observed data p(D|6) given a parameter vector ¢ . p(0|D) = 1%
@ Process of generative learning consists of computing the MLE 6 of ¢ (D)
based on D: o Likelihood: p(D|0) o Posterior: p(4|D)
0 — argmax p(D|0) e Prior: p(6) e Marginal likelihood: p(D) = [, p(D|0)p(6)d6

23C)
@ Summarizing the posterior:

@ We then use a plug-in approach to perform classification VAP

N o Posterior mode: = argmax, g p(6|D) (maximum a posteriori).
7 (x| k) o Posterior mean: 6™ = E [0|D].

fox) = argmax Pg(Y = k[X = x) = argmax e Posterior variance: Var[0|D].

ke{l,...,K} ke{l,...K} ZJK:1 mp(x|¢;)



Bayesian Learning Review of Bayesian Inference Bayesian Learning Review of Bayesian Inference

Simple Example: Coin Tosses Simple Example: Coin Tosses
@ A simple example: We have a coin with probability ¢ of coming up heads. ; ; |
Model coin tosses as i.i.d. Bernoullis, 1 =head, 0 =tail. 10 10 “
@ Estimate ¢ given a dataset D = {x;}_, of tosses. 12 12 :
p(D[p) = ¢" (1 — )" . .
with n; = S 1(x; = ). . . -
@ Maximum Likelihood estimate: e
UL : .
@ Bayesian approach: treat the unknown parameter ¢ as a random i
variable. Simple prior: ¢ ~ Uniform|0, 1], i.e., p(¢) = 1 for ¢ € [0, 1]. ‘ ’ “
Posterior distribution: ’ & ®
p(DO)p(0) _ ¢"(1—¢)" -1 /‘ " " (n41)! ‘ 5 "
D = = s D = 1 1— Od =
p(¢| ) p(D) p(D) p( ) 0 ¢ ( ¢) d) nlli’l()! 0 0f 02 03 0 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10 0 02 03 04 05 06 07 08 09 I
Posterior is a Beta(n: + 1, no + 1) distribution: q@mean _ ,,1+21_ Posterior becomes berlaves like the ML estimate as dataset grows and is
nt peaked at true value ¢* = .7.
Simple Example: Coin Tosses Simple Example: Coin Tosses

@ The posterior predictive distribution is the conditional distribution of

@ All Bayesian reasoning is based on the posterior distribution. Xot1 given D = {x;}
o Posterior mode: ¢VA° = . :
o Posterior mean: ¢ = "Lt P(xp1|D) = / P(xnt1]0, D)p(0|D)do
@ Posterior variance: Var[¢|D] = n—#@’“ean(l — gmean) 01
o (1 — a)-credible regions: (I,r) C [0,1] s.t. [ p(0|D)dd =1 — cv. _ / p(Xur1|0)p(6|D)de
@ Consistency: Assuming that the true parameter value ¢* is given a 0 R
non-zero density under the prior, the posterior distribution concentrates = (pMeAN)+1 (] — pMmeam)l—xi

around the true value as n — oo.

@ Rate of convergence?
@ We predict on new data by averaging the predictive distribution over the

posterior. Accounts for uncertainty about ¢.



Simple Example: Coin Tosses Beta Distributions

@ In this example, the posterior distribution has a known analytic form and
is in the same Beta family as the prior: Uniform[0, 1] = Beta(1, 1).

@ An example of a conjugate prior.

@ A Beta distribution Beta(a, b) with parameters a,b > 0 is an exponential
family distribution with density

Lla+b) , b—1
= (] -
Pl b) = [ o1 =9
where T'(1) = [;° u'~'e™"du is the gamma function.
@ If the prior is ¢ ~ Beta(a, b), then the posterior distribution is

P(¢|D,a,b) =X ¢a+n]71(1 _ ¢)b+n071

so is Beta(a + ny,b + np).

@ Hyperparameters a and b are pseudo-counts, an imaginary initial
sample that reflects our prior beliefs about ¢.

Bayesian Inference on the Categorical Distribution Dirichlet Distributions

@ Suppose we observe D = {y;}!_, withy; € {1,...,K}, and model them as
i.i.d. with pmf 7 = (7, ..., 7g):

n K
p(Dlr) = [[m =[] =
i=1 k=1

with n, = E;’:l 1(y; = k) and m; > 0, Zszl e = 1.
@ The conjugate prior on 7 is the Dirichlet distribution Dir(«, .. ., ag) with
parameters «; > 0, and density

_ DOS ) 7T e
p(ﬂ) = 5K Tk

L= Tlow) 125 (A) Support of the Dirichlet density for K = 3.
(B) Dirichlet density for oy, = 10.

(C) Dirichlet density for a;, = 0.1.

on the probability simplex {7 : m, > 0,3 %, m = 1}.
@ The posterior is also Dirichlet Dir(«; + ny, . .., agx + ng).

@ Posterior mean is
~mean _ O+ 1y

k - K :
dim1 ot n



Naive Bayes

@ Return to the spam classification example with two-class naive Bayes

x, |¢k H d)k]

¢k] —x

o Setn, =" 1{y; =k}, my =S, 1(yi = k,x” = 1). MLE is:
(/)
- by = Tkt _ M,
n N ny

@ One problem: if the ¢-th word did not appear in documents labelled as
class k then ¢, = 0 and

P(Y = k|X = x with ¢-th entry equal to 1)
0

o Tk ﬁ (@i)xw (1 - égkj)l =0
j=1

i.e. we will never attribute a new document containing word /¢ to class k
(regardless of other words in it).

Being Bayesian about Naive Bayes
Bayesian Inference on Naive Bayes model

@ Given D = {(x;,y:)
We can calculate

_,, want to predict a label y for a new document x.

p(%,y = k|D) = p(y = kID)p(x[y = k, D)
with
- Qg+ ng
pG=kD)= —x——
Zle o +n
NO):1~:k,D: a+nkj
p(x v D) a+b+mn

@ Predicted class is

p(y = K[D)p(x]y = k, D)
p(D)

@ Compared to ML plug-in estimator, pseudocounts help to “regularize”
probabilities away from extreme values.

Being Bayesian about Naive Bayes
Bayesian Inference on Naive Bayes model

@ Under the Naive Bayes model, the joint distribution of labels
yi € {1,...,K} and data vectors x; € {0, 1} is

1(yi=k)

Hp(xiayl HH ﬂ—kHQﬁk]} Qbkj
i=1

— )

where m = ST, 1 = k), g = 3o, 10i = ko = 1).

@ For conjugate prior, we can use Dir((ay)X_,) for m, and Beta(a, b) for ¢y
independently.

@ Because the likelihood factorizes, the posterior distribution over = and
(¢x;) also factorizes, and posterior for 7 is Dir((cy + n)5_,), and for ¢y is
Beta(a + nyj, b+n; — I’lkj).

Bayesian Learning and Regularization
@ Consider a Bayesian approach to logistic regression: introduce a

multivariate normal prior for weight vector w € R?, and a uniform
(improper) prior for offset b € R. The prior density is:

P 1
2\—2% IR ST
plb.) = 1+ @ro?) S exp =51l

1 n
S Iwll3 = > log(1 + exp(—yi(b + wa,«m)

i=1

@ The posterior is

p(b,w|D) x exp (—

@ The posterior mode is equivalent to minimizing the L,-regularized
empirical risk.
@ Regularized empirical risk minimization is (often) equivalent to having a
prior and finding a MAP estimate of the parameters.
e L, regularization - multivariate normal prior.
e L, regularization - multivariate Laplace prior.
@ From a Bayesian perspective, the MAP parameters are just one way to
summarize the posterior distribution.



Bayesian Learning Bayesian Model Selection Bayesian Learning Bayesian Model Selection

Bayesian Model Selection Bayesian Occam’s Razor
@ A model M with a given set of parameters 6, consists of both the @ Occam’s Razor: of two explanations adequate to explain the same set of
likelihood p(D|f ) and the prior distribution p(6 ). observations, the simpler should be preferred.
@ One example model would consist of all Gaussian mixtures with K
components and equal covariance (LDA): Oipp = (71, ..., T&; f1y - -+, fix5 3, p(DIM) = / p(D|Opg, M)p(Or1| M)db
e

along with a prior on 8; another would allow different covariances (QDA)
GQDA = (7T17'"77TK;/1'17'"muK;Elw--aZK)-
@ The posterior distribution @ Model evidence p(D| M) is the probability that a set of randomly selected

parameter values inside the model would generate dataset D.

(O D, M) = p(D|Or1, M)p(O | M) @ Models that are too simple are unlikely to generate the observed dataset.
p(DIM) @ Models that are too complex can generate many possible dataset, so
again, they are unlikely to generate that particular dataset at random.
@ Marginal probability of the data under M (Bayesian model evidence): |
T \
POIM) = [ PO Mpl02al )00 S :
& A
o Compare models using their Bayes factors 27170 < ~ /;aﬂta Sets_\D 1;\ -
- 0

Bayesian Learning Bayesian Model Selection Discussion and Further Reading
Bayesian Learning — Discussion

Bayesian model comparison: Occam’s razor at work S o
@ Use probability distributions to reason about uncertainties of parameters

(latent variables and parameters are treated in the same way).
@ Model consists of the likelihood function and the prior distribution on
parameters: allows to integrate prior beliefs and domain knowledge.

0 o o o N @ Bayesian computation — most posteriors are intractable, and posterior
. / 1 needs to be approximated by:

oL 2. 20\/ 20\/ o e Monte Carlo methods (MCMC and SMC).

of ¥ oA o 0 ' e Variational methods (variational Bayes, belief propagation etc).
P E P 5 0P 5 0o 5w 2 @ Prior usually has hyperparameters, i.e., p(6) = p(6]¢>). How to choose ?

M=4 M=5 M=6 M=7 Tos o Be Bayesian about ¢ as well — choose a hyperprior p(x)) and compute

40 40 40 40 P(¢|D)

" U 2 2 2 o Maximum Likelihood Il — 4 = argmax,, .y p(D|1)).

0 0 0 0 0 0 1 2 3 M 4 5 6 7
5 0 %0 5 020 5 1020 5 10 p(DWJ) = /p(D|0)p(9|z/;)a’9

p(DlY)p(¥)
p(¥|D) (D)

figures by M.Sahani



Discussion and Further Reading
Bayesian Learning — Further Reading

@ Videolectures by Zoubin Ghahramani:
Bayesian Learning and Graphical models.

@ Gelman et al. Bayesian Data Analysis.
@ Kevin Murphy. Machine Learning: a Probabilistic Perspective.
@ E. T. Jaynes. Probability Theory: The Logic of Science.

Parametric vs Nonparametric models

@ Parametric models have a fixed finite number of parameters, regardless
of the dataset size. In the Bayesian setting, given the parameter vector 6,
the predictions are independent of the data D.

p(%,0|D) = p(0|D)p(x]0)

Parameters can be thought of as a data summary: communication
channel flows from data to the predictions through the parameters.
Model-based learning (e.g., mixture of K multivariate normals)

@ Nonparametric models allow the number of “parameters” to grow with
the dataset size. Alternatively, predictions depend on the data (and the
hyperparameters).

Memory-based learning (e.g., kernel density estimation)

Bayesian Learning Gaussian Processes

Gaussian Processes

Regression

0.5
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@ We are given a dataset D = {(x;,y;)}I,, x; € R?, y; € R.
@ Regression: learn the underlying real-valued function f(x).



Different Flavours of Regression

@ We can model response y; as a noisy version of the underlying function f
evaluated at input x;:
yilf, 5 ~ N(f(x),07%)

Appropriate loss: L(y,f(x)) = (v — f(x))?
@ Frequentist Parametric approach: model f as f, for some parameter
vector 6. Fit by ML / ERM with squared loss (linear regression).

@ Frequentist Nonparametric approach: model f as the unknown
parameter taking values in an infinite-dimensional space of functions. Fit
f by regularized ML / ERM with squared loss (kernel ridge regression)

@ Bayesian Parametric approach: model f as f, for some parameter
vector 6. Put a prior on 6§ and compute a posterior p(6|D) (Bayesian linear
regression).

@ Bayesian Nonparametric approach: treat f as the random variable
taking values in an infinite-dimensional space of functions. Put a prior
over functions f € F, and compute a posterior p(f|D) (Gaussian Process
regression).

Gaussian Processes

@ What does a multivariate normal prior mean?

@ Imagine x forms an infinitesimally dense grid of data space. Simulate
prior draws

f ~ N(0,K)

Plotfvsx;fori=1,... n.

@ The corresponding prior over functions is called a Gaussian Process
(GP): any finite number of evaluations of which follow a Gaussian
distribution.

0 01 02 03 04 05 06 07 08 09 1

http://www.gaussianprocess.org/

@ What properties of the function can S

Bayesian Learning Gaussian Processes

@ Just work with the function values at

X = The prior p(f) encodes our prior
the inputs f = (f(x1),....f(xa)) knowledge about the function.

we incorporate?
o Multivariate normal prior on f:

f ~ N(0,K)
@ Use a kernel function « to define K:

Ky = k(xi,x))

o Expect regression functions to be N
Smooth: |fX and x/ are Close by, then "o 0.1 02 03 04 05 06 07
f(x) and f(x) have similar values, i.e. @ Model:
strongly correlated.

, f ~ N(0,K)
(i)~ () G &) i~ N )
In particular, want
k(x,x") = k(x,x) = k(x', x").

Gaussian Processes

@ Different kernels lead to different function characteristics.

output, f(x)

output, f(x)

it 5 . -5 0 5
input, x input, x
3 3
2 J\/W\
1 1
0 0
..ﬂ _1
] 2
= 1 0 1 2% - 0 1 2

Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006.



Gaussian Processes

fix ~ N(0,K)
yIf ~ N (F, 0%I)

@ Posterior distribution:
fly ~ N(K(K + ¢*I) 'y, K — K(K + ¢*I) " 'K)

@ Posterior predictive distribution: Suppose x’ is a test set. We can extend
our model to include the function values f’ at the test set:

f ! 0 Kxx Kxx’
(e) = ((0) (2 &22))

yIf ~ N (£, 5°1)
where Ky is matrix with (i, j)-th entry k(x;, x}).
@ Some manipulation of multivariate normals gives:
fl|y ~N (Kx’x(Kxx + 021)7135 Kyyw — KX’X(KXX + 021)71Kxx’)

@ A whirlwind journey through data mining and machine learning
techniques:

o Unsupervised learning: PCA, MDS, Isomap, Hierarchical clustering,
K-means, mixture modelling, EM algorithm.

o Supervised learning: LDA, QDA, naive Bayes, logistic regression, SVMs,
kernel methods, kNN, deep neural networks, Gaussian processes, decision
trees, ensemble methods: random forests, bagging, stacking, dropout and
boosting.

e Conceptual frameworks: prediction, performance evaluation,
generalization, overfitting, regularization, model complexity, validation and
cross-validation, bias-variance tradeoff.

o Theory: decision theory, statistical learning theory, convex optimization,
Bayesian vs. frequentist learning, parametric vs non-parametric learning.

@ Further resources:

@ Machine Learning Summer Schools, videolectures.net.
@ Conferences: NIPS, ICML, UAI, AISTATS.
o Mailing list: ml-news.

Thank You!

Gaussian Processes
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GP regréssion demo: http://www.tmpl.fi/gp/



