
Statistical Data Mining and Machine Learning
Hilary Term 2016

Dino Sejdinovic
Department of Statistics

Oxford

Slides and other materials available at:
http://www.stats.ox.ac.uk/~sejdinov/sdmml

Decision Trees Decision Trees

Decision Trees

Decision Trees Decision Trees

Classification and Regression Trees (CART)

Denote input domain by X and let the output domain be Y = {1, . . . ,K}
(classification) or Y = R (regression).
A decision tree gives a partition of X into R disjoint sets (regions)
P = {R1, . . . ,RR}, such that the fitted decision function is constant on
each region Rj ⊂ X , j = 1, . . . ,R, i.e.

ftree(x) = βj,∀x ∈ Rj.

Main strengths: easy to use, easy to interpret.
Often serve as a starting point for powerful model combination and
ensemble techniques: bagging, boosting (random forests).

Decision Trees Decision Trees

Example: NHS Direct Self-help Guide108 CHAPTER 8. TREE-BASED CLASSIFIERS

Figure 8.1: Page taken from the NHS Direct self-help guide (left) and corresponding decision tree
(right)

and the entropy
i(p) = −

∑

l

pl log pl,

where p = (p1, . . . , pL) denotes the empirical distribution of the class labels in the partition.4 Figure
8.3 displays the Gini coefficient and the entropy for the two-class case. If the partition consists of only
one class (frequency p1 either 0 or 1), the impurity is 0. Are both classes equally present (frequency
p1 = 0.5), then both impurity measures are maximal.

When splitting a node with empirical distribution p into two nodes with empirical distributions pl

(left node) and pr (right node) the decrease in impurity is

i(p)− (πli(pl) + πri(pr)) ,

where πl is the proportion of observations that is allocated to the left node and πr = 1 − πl is the
proportion of observations allocated to the right node.

We now can use the decrease in impurity to “grow” the tree. Starting with one partition (i.e.
the root node), we repeatedly split all terminal nodes such that each time th decrease in impurity is
maximal. We can repeat this until no more decrease is possible. Figure 8.4 shows the decision tree
for the Pima Indians data set. The Pima Indians data set was collected by the US National Institute of

4It might occur that pl = 0, in this case we define 0 log 0 := 0.

Decision Trees Decision Trees

Example: NHS Direct Self-help Guide

108 CHAPTER 8. TREE-BASED CLASSIFIERS

Figure 8.1: Page taken from the NHS Direct self-help guide (left) and corresponding decision tree
(right)

and the entropy
i(p) = −

∑

l

pl log pl,

where p = (p1, . . . , pL) denotes the empirical distribution of the class labels in the partition.4 Figure
8.3 displays the Gini coefficient and the entropy for the two-class case. If the partition consists of only
one class (frequency p1 either 0 or 1), the impurity is 0. Are both classes equally present (frequency
p1 = 0.5), then both impurity measures are maximal.

When splitting a node with empirical distribution p into two nodes with empirical distributions pl

(left node) and pr (right node) the decrease in impurity is

i(p)− (πli(pl) + πri(pr)) ,

where πl is the proportion of observations that is allocated to the left node and πr = 1 − πl is the
proportion of observations allocated to the right node.

We now can use the decrease in impurity to “grow” the tree. Starting with one partition (i.e.
the root node), we repeatedly split all terminal nodes such that each time th decrease in impurity is
maximal. We can repeat this until no more decrease is possible. Figure 8.4 shows the decision tree
for the Pima Indians data set. The Pima Indians data set was collected by the US National Institute of

4It might occur that pl = 0, in this case we define 0 log 0 := 0.

Decision Trees Decision Trees

Decision Trees

A decision tree is a hierarchically organized structure, with each node
splitting the data space into regions based on value of a single feature
(attribute).
Some terminology:

Parent of a node c is the node with an arrow pointing into c.
Children of a node c are those nodes which have node c as a parent.
Root node is the top node of the tree; the only node without parents.
Leaf nodes are nodes which do not have children.
Stumps are trees with just the root node and two leaf nodes.
A K-ary tree is a tree where each node (except for leaf nodes) has K
children. Usually working with binary trees (K = 2).
The depth of a tree is the maximal length of a path from the root node to a
leaf node.

Partition of X into R disjoint sets (R1, . . . ,RR) is determined by the
leaves of the tree.
On each region Rj the same decision/prediction is made: ftree(x) = βj for
all x ∈ Rj - typically as a majority vote of the data items associated to that
leaf (classification) or as their mean (regression)

Decision Trees Decision Trees

Example: Iris Data

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4.4 3.2 1.3 0.2 setosa
5.9 3.0 5.1 1.8 virginica
6.3 3.3 6.0 2.5 virginica
5.3 3.7 1.5 0.2 setosa
5.5 2.5 4.0 1.3 versicolor
6.1 2.9 4.7 1.4 versicolor
6.1 3.0 4.9 1.8 virginica
5.7 2.8 4.5 1.3 versicolor
5.4 3.0 4.5 1.5 versicolor
4.8 3.4 1.6 0.2 setosa
4.6 3.1 1.5 0.2 setosa
4.9 3.1 1.5 0.2 setosa
6.4 2.9 4.3 1.3 versicolor
.......

Previously seen Iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for
50 flowers from each of 3 species of iris. The species are Iris setosa,
versicolor, and virginica.

Decision Trees Decision Trees

Example: Iris Data
8.2. GROWING A TREE 109

|
Petal.Length< 2.45

Petal.Width< 1.75
setosa

versicolor virginica

Decision tree

1 2 3 4 5 6 7

0
.5

1
.0

1
.5

2
.0

2
.5

Petal.Length

P
e

ta
l.
W

id
th

setosa

versicolor

virginica

Induced partitioning

Figure 8.2: Decision tree for the iris data set and corresponding partitioning of the feature space

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

p1

G
in

i
c
o

e
ff

ic
ie

n
t

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7

E
n

tr
o

p
y

Gini coefficient

Entropy

Figure 8.3: Gini coefficient and entropy for a two-class problem

Partition of X into R disjoint sets (R1, . . . ,RR) is determined by the leaves of
the tree.

Decision Trees Decision Trees

Decision functions based on trees

For regression problems, the parameterized function is

f (x) =
R∑

j=1

βj1[x∈Rj],

Using squared loss, optimal parameters are:

β̂j =

∑
i yi1[xi∈Rj]∑
i 1[xi∈Rj]

For classification problems, the estimated probability of each class k in
region Rj is simply:

β̂jk =

∑
i 1(yi = k)1[xi∈Rj]∑

i 1[xi∈Rj]

These estimates can be regularized as well.

Decision Trees Decision Trees

Partition Estimation

Ideally, would like to find partition that achieves minimal risk: lowest
mean-squared error for prediction or misclassification rate for
classification.
Number of potential partitions is too large to search exhaustively.
‘Greedy’ search heuristics for a good partition:

Start at root.
Determine best feature and value to split.
Recurse on children of node.
Stop at some point.

Decision Trees Decision Trees

Growth Heuristic for Regression Trees

1 Start with R1 = X = Rp.
2 For each feature j = 1, . . . , p, and for each value v ∈ R that we can split

on:
1 Split data set:

I< = {i : x(j)
i < v} I> = {i : x(j)

i ≥ v}

2 Estimate parameters:

β< =

∑
i∈I<

yi

|I<|
β> =

∑
i∈I>

yi

|I>|

3 Compute the quality of split, e.g., the square loss:
∑

i∈I<

(yi − β<)2 +
∑

i∈I>

(yi − β>)2

3 Choose split, i.e., feature j and value v, with minimal loss.
4 Recurse on both children, with datasets (xi, yi)i∈I< and (xi, yi)i∈I> .

Decision Trees Decision Trees

Boston Housing Data

crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centres
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)^2 where B is the proportion of blacks by town
lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s

Predict median house value.

Decision Trees Decision Trees

Boston Housing Data

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●●● ●

●●
●
●
●●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●
●
●

●

●
●

●
●

●

●
●●●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8

10
20

30
40

50

NOX

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.65

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●●● ●

●●
●
●
●●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●
●
●

●

●
●

●
●

●

●
●●●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8

10
20

30
40

50

NOX

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.42

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.84

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

S

8.32

Decision Trees Decision Trees

Boston Housing Data

Overall, the best first split is on variable rm, average number of rooms per
dwelling.
Final tree contains predictions in leaf nodes.

|rm< 6.941

lstat>=14.4

crim>=6.992 dis>=1.385

rm< 6.543

rm< 7.437

crim>=7.393 nox>=0.6825

11.98 17.14

21.63 27.43
45.58

14.4 33.35 21.9 45.9

Decision Trees Decision Trees

Growth Heuristics for Classification Trees

For binary classification, the proportion of class 1 items in node
corresponding to region Rj is given by

β̂j1 =

∑
i 1(yi = 1)1[xi∈Rj]∑

i 1[xi∈Rj]

A split is good if both sides are more pure, i.e. β̂j1 is closer to 0 or 1.
Different measures of node impurity:

Misclassification error: 1−max{β̂j1, 1− β̂j1}.
Gini impurity: 2β̂j1(1− β̂j1).
Entropy: −β̂j1 log β̂j1 − (1− β̂j1) log(1− β̂j1).

Gini and entropy preferred: differentiable and produce purer nodes.
Extension to multi-class:

Misclassification error: 1−maxk β̂jk.
Gini impurity:

∑K
k=1 β̂jk(1− β̂jk).

Entropy: −∑K
k=1 β̂jk log β̂jk.

Stops once a node has insufficient number of items, or is pure.

Decision Trees Decision Trees

Growth Heuristics for Classification Trees

8.2. GROWING A TREE 109

|
Petal.Length< 2.45

Petal.Width< 1.75
setosa

versicolor virginica

Decision tree

1 2 3 4 5 6 7

0
.5

1
.0

1
.5

2
.0

2
.5

Petal.Length

P
e
ta

l.
W

id
th

setosa

versicolor

virginica

Induced partitioning

Figure 8.2: Decision tree for the iris data set and corresponding partitioning of the feature space

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

p1

G
in

i
c
o

e
ff

ic
ie

n
t

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7

E
n

tr
o

p
y

Gini coefficient

Entropy

Figure 8.3: Gini coefficient and entropy for a two-class problem
Misclassification error?

Decision Trees Decision Trees

Example: Leukemia Prediction

Leukemia Dataset: Expression values of 3541 genes for 47 patients with
Leukemia ALL subtype (left) and 25 patients with AML (right).

Decision Trees Decision Trees

Example: Leukemia Prediction

Tree found is of depth 2.
Very interpretable as it selects 3 out of 4088 genes and bases prediction
only on these.

|X.2481< 0.9985

X.172>=−0.3118 X.35< 0.7172

0 1
0 1

Decision Trees Decision Trees

Model Complexity

When should tree growing be stopped?
Will need to control complexity to prevent overfitting, and in general find
optimal tree size with best predictive performance.
A regularized objective

Remp(T) + C × size(T)

Grow the tree from scratch and stop once the criterion objective starts to
increase.
First grow the full tree and prune nodes (starting at leaves), until the
objective starts to increase.

Second option is preferred as the choice of tree is less sensitive to
“wrong” choices of split points and variables to split on in the first stages
of tree fitting.
Use cross-validation to determine optimal C.

Decision Trees Decision Trees

Model Complexity
library(rpart); library(MASS); data(Pima.tr)
rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],

control=rpart.control(xval=10)) ## 10-fold x-val
plotcp(rp) #visualise x-val results as a function of the complexity parameter
#select complexity parameter .029 since this results in lowest x-val
rp2 <- prune.rpart(rp,.029)
plot(rp2); text(rp2)

●

●

● ●

●

●

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
6

0.
8

1.
0

1.
2

Inf 0.19 0.11 0.066 0.029 0.012

1 2 3 4 5 8

size of tree

|
glu< 123.5

ped< 0.3095

glu< 166 bmi< 28.65

No

No Yes
No Yes

Ensemble Methods Bagging

Bagging

Ensemble Methods Bagging

Model Variability

|
glu< 123.5

ped< 0.3095

glu< 166 bmi< 28.65

No

No Yes
No Yes

Is the tree ‘stable’ if training data were slightly different?

Ensemble Methods Bagging

Bootstrap for Classification Trees

The bootstrap is a way to assess the variance of estimators.
Fit multiple trees, each on a bootstrapped sample. This is a data set
obtained by sampling with replacement n times from training set.

> n <- nrow(Pima.tr)
> bss <- sample(1:n, n , replace=TRUE)
> sort(bss)
[1] 2 4 4 5 6 7 9 10 11 12 12 12 12 13 13 15 15 20 ...

> tree_boot <- rpart(Pima.tr[bss,8] ~ ., data=Pima.tr[bss,-8],
control=rpart.control(xval=10)) ## 10-fold CV

|glu< 123.5

age< 28.5

glu< 94.5

npreg< 5.5

glu< 156.5

ped< 0.421No

No

No Yes

No Yes

Yes

|glu< 123.5

ped< 0.348

glu< 164.5 bmi< 28.65

No

No Yes
No Yes

Ensemble Methods Bagging

Bootstrap for Regression Trees

Regression for Boston housing data.
Predict median house prices based only on crime rate.
Use decision stump—the simplest tree with a single split at root.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

|crime>=1.918

13.44 24.44

Ensemble Methods Bagging

Bootstrap for Regression Trees

We fit a predictor f̂ (x) on the data {(xi, yi)}n
i=1.

Assess the variance of f̂ (x) by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators

f̂ b(x), b = 1, . . . ,B

Each tree f̂ b is fitted on the resampled data (xji , yji)
n
i=1 where each ji is

chosen randomly from {1, . . . , n} with replacement.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

Ensemble Methods Bagging

Bagging

Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples.

1 For b = 1, . . . ,B:
1 Draw indices (j1, . . . , jn) from the set {1, . . . , n} with replacement.
2 Fit the model, and form predictor f̂ b(x) based on bootstrap sample

(xj1 , yj1), . . . , (xjn , yjn)

2 Form bagged estimator

f̂Bag(x) =
1
B

B∑

b=1

f̂ b(x)

Ensemble Methods Bagging

Bagging

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG(CRIME)

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

Bagging smooths out the drop in the estimate of median house prices.
Bagging reduces the variance of predictions, i.e. when taking
expectations over a random dataset D:

ED
[
(f̂ (x)− ED[f̂ (x)])2] ≥ ED

[
(f̂Bag(x)− ED[f̂Bag(x)])2]

Ensemble Methods Bagging

Variance Reduction in Bagging

Suppose, in an ideal world, our estimators f̂ b are each based on different
independent datasets of size n from the true joint distribution of X,Y.
The aggregated estimator would then be

f̂ag(x) =
1
B

B∑

b=1

f̂ b(x)→ f̄ (x) = ED[f̂ (x)] as B→∞

where expectation is with respect to datasets of size n.
The squared-loss is:

ED[(Y − f̂ag(X))2|X = x] = ED[(Y − f̄ (X))2|X = x] + ED[(f̄ (X)− f̂ag(X))2|X = x]

→ ED[(Y − f̄ (X))2|X = x] as B→∞.

Aggregation reduces the squared loss by eliminating variance of f̂ (x).
In bagging, variance reduction still applies at the cost of a small increase
in bias.
Bagging is most useful for flexible estimators with high variance (and
low bias).

Ensemble Methods Bagging

Variance Reduction in Bagging

Deeper trees have higher complexity and variance.
Compare bagging trees of depth 1 and 3.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●● ●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●● ●●

● ●

●
●

● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

log(x$crim)

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●● ●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●● ●●

● ●

●
●

● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

log(x$crim)

y

Ensemble Methods Bagging

Out-of-bag Test Error Estimation

How well does bagging to? Can we estimate generalization performance,
and tune hyperparameters?
Answer 1: cross-validation.

● ● ● ● ● ● ● ● ●v=4

● ● ● ● ● ● ● ● ●v=3

● ● ● ● ● ● ● ● ●v=2

● ● ● ● ● ● ● ● ●v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

For each v = 1, . . . ,V,
fit f̂Bag on the training samples.
predict on validation set.

Compute the CV error by averaging the loss across all test observations.

Ensemble Methods Bagging

Out-of-bag Test Error Estimation

But to fit f̂Bag on the training set for each v = 1, . . . ,V, we have to train on
B bootstrap samples!

● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ●● b=1

v=4

● ● ● ● ● ● ● ● ● ● ● ●●● ●● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=1

v=3

● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●● ●●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●●● ●● ● b=1

v=2

● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●●● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ●●● ●● b=1

v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

Answer 2: Out-of-bag test error estimation.

Ensemble Methods Bagging

Out-of-bag Test Error Estimation

Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

f̂ oob(x1) =
1
4

∑

b∈{3,4,8,10}
f̂ b(x1)

Ensemble Methods Bagging

Out-of-bag Test Error Estimation

Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

f̂ oob(x2) =
1
3

∑

b∈{2,8,10}
f̂ b(x2)

Ensemble Methods Bagging

Out-of-bag Test Error Estimation

For each i = 1, . . . , n, the out-of-bag sample is:

B̃i = {b : xi is not in training set} ⊆ {1, . . . ,B}.

Construct the out-of-bag estimate at xi:

f̂ oob(xi) =
1
|B̃i|

∑

b∈B̃i

f̂ b(ii)

Out-of-bag risk:

Roob =
1
n

n∑

i=1

L(yi, f̂ oob(xi))

Ensemble Methods Bagging

Out-of-bag Test Error Estimation

We need |B̃i| to be reasonably large for all i = 1, . . . , n.
The probability πoob of an observation NOT being included in a bootstrap
sample (j1, . . . , jn) (and hence being ‘out-of-bag’) is:

πoob =
n∏

i=1

(
1− 1

n

)
n→∞−→ 1

e
≈ 0.367.

Hence E[|B̃i|] ≈ 0.367B

In practice, number of bootstrap samples B is typically between 200 and
1000, meaning that the number |B̃i| of out-of-bag samples will be
approximately in the range 70− 350.
The obtained test error estimate is asymptotically unbiased for large
number B of bootstrap samples and large sample size n.

Ensemble Methods Bagging

Example: Boston Housing Dataset

Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.
Use the entire dataset with p = 13 predictor variables.

n <- nrow(BostonHousing) ## n samples
X <- BostonHousing[,-14]
Y <- BostonHousing[,14]
B <- 100
maxdepth <- 3
prediction_oob <- rep(0,length(Y)) ## vector with oob predictions
numbertrees_oob <- rep(0,length(Y)) ## number pf oob trees
for (b in 1:B) { ## loop over bootstrap samples
subsample <- sample(1:n,n,replace=TRUE) ## "in-bag" samples
outofbag <- (1:n)[-subsample] ## "out-of-bag" samples

fit tree on "in-bag" samples
treeboot <- rpart(Y ~ ., data=X, subset=subsample,

control=rpart.control(maxdepth=maxdepth,minsplit=2))
predict on oob-samples

prediction_oob[outofbag] <- prediction_oob[outofbag] +
predict(treeboot, newdata=X[outofbag,])

numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1
}
final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob

Ensemble Methods Bagging

Example: Boston Housing Dataset

plot(prediction_oob, Y, xlab="PREDICTED", ylab="ACTUAL")

For depth d = 1.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●● ●●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

● ●●●

● ●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

● ●

●●
●

●
●

●

●

●

●●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

20 25 30

10
20

30
40

50

PREDICTED

A
C

T
U

A
L

For depth d = 10.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●● ●●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

● ●●●

● ●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

● ●

●●
●

●
●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40

10
20

30
40

50

PREDICTED

A
C

T
U

A
L

Ensemble Methods Bagging

Example: Boston Housing Dataset

Out-of-bag error as a function of tree depth d:
tree depth d 1 2 3 4 5 10 30
single tree f̂ 60.7 44.8 32.8 31.2 27.7 26.5 27.3

bagged trees f̂Bag 43.4 27.0 22.8 21.5 20.7 20.1 20.1
Without bagging, the optimal tree depth seems to be d = 10.
With bagging, we could also take the depth up to d = 30.

Summary:
Bagging reduces variance and prevents overfitting
Often improves accuracy in practice.
Bagged trees cannot be displayed as nicely as single trees and some of
the interpretability of trees is lost.

Ensemble Methods Random Forests

Random Forests

Ensemble Methods Random Forests

Random Forests and Extremely Randomized Trees

Random forests are similar to bagged decision trees with a few key
differences:

For each split point, the search is not over all p variables but just over mtry
randomly chosen ones (where e.g. mtry = bp/3c)
No pruning necessary. Trees can be grown until each node contains just
very few observations (1 or 5).
Random forests tend to produce better predictions than bagging.
Results often not sensitive to the only tuning parameter mtry.
Implemented in randomForest library.

Even more random methods, e.g. extremely randomized trees:
For each split point, sample mtry variables each with a random value to
split on, and pick the best one.
Often works even when mtry equals 1!

Often produce state-of-the-art results, and top performing methods in
machine learning competitions.

Breiman (2001), Geurts et al (2006)

Ensemble Methods Random Forests

Random Forests

STATISTICAL MODELING: THE TWO CULTURES 207

Table 1
Data set descriptions

Training Test
Data set Sample size Sample size Variables Classes

Cancer 699 — 9 2
Ionosphere 351 — 34 2
Diabetes 768 — 8 2
Glass 214 — 9 6
Soybean 683 — 35 19

Letters 15,000 5000 16 26
Satellite 4,435 2000 36 6
Shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
Digit 7,291 2,007 256 10

that in many states, the trials were anything but
speedy. It funded a study of the causes of the delay.
I visited many states and decided to do the anal-
ysis in Colorado, which had an excellent computer-
ized court data system. A wealth of information was
extracted and processed.

The dependent variable for each criminal case
was the time from arraignment to the time of sen-
tencing. All of the other information in the trial his-
tory were the predictor variables. A large decision
tree was grown, and I showed it on an overhead and
explained it to the assembled Colorado judges. One
of the splits was on District N which had a larger
delay time than the other districts. I refrained from
commenting on this. But as I walked out I heard one
judge say to another, “I knew those guys in District
N were dragging their feet.”

While trees rate an A+ on interpretability, they
are good, but not great, predictors. Give them, say,
a B on prediction.

9.1 Growing Forests for Prediction

Instead of a single tree predictor, grow a forest of
trees on the same data—say 50 or 100. If we are
classifying, put the new x down each tree in the for-
est and get a vote for the predicted class. Let the for-
est prediction be the class that gets the most votes.
There has been a lot of work in the last five years on
ways to grow the forest. All of the well-known meth-
ods grow the forest by perturbing the training set,
growing a tree on the perturbed training set, per-
turbing the training set again, growing another tree,
etc. Some familiar methods are bagging (Breiman,
1996b), boosting (Freund and Schapire, 1996), arc-
ing (Breiman, 1998), and additive logistic regression
(Friedman, Hastie and Tibshirani, 1998).

My preferred method to date is random forests. In
this approach successive decision trees are grown by
introducing a random element into their construc-
tion. For example, suppose there are 20 predictor

variables. At each node choose several of the 20 at
random to use to split the node. Or use a random
combination of a random selection of a few vari-
ables. This idea appears in Ho (1998), in Amit and
Geman (1997) and is developed in Breiman (1999).

9.2 Forests Compared to Trees

We compare the performance of single trees
(CART) to random forests on a number of small
and large data sets, mostly from the UCI repository
(ftp.ics.uci.edu/pub/MachineLearningDatabases). A
summary of the data sets is given in Table 1.

Table 2 compares the test set error of a single tree
to that of the forest. For the five smaller data sets
above the line, the test set error was estimated by
leaving out a random 10% of the data, then run-
ning CART and the forest on the other 90%. The
left-out 10% was run down the tree and the forest
and the error on this 10% computed for both. This
was repeated 100 times and the errors averaged.
The larger data sets below the line came with a
separate test set. People who have been in the clas-
sification field for a while find these increases in
accuracy startling. Some errors are halved. Others
are reduced by one-third. In regression, where the

Table 2
Test set misclassification error (%)

Data set Forest Single tree

Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6

Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle ×103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

From Breiman, Statistical Modelling: the two cultures, 2001.

Ensemble Methods Random Forests

Random Forests

Comparison of 179 classifiers on 121 datasets. Random forests come top
with SVMs close behind.

From Delgado et al, 2014

Ensemble Methods Random Forests

Looking at the Boston Housing data again (and at the help page for
randomForest first).

library(randomForest)
library(MASS)
data(Boston)

y <- Boston[,14]
x <- Boston[,1:13]

?randomForest

Ensemble Methods Random Forests

> randomForest package:randomForest R Documentation

Classification and Regression with Random Forest

Description:
’randomForest’ implements Breiman’s random forest algorithm (based
on Breiman and Cutler’s original Fortran code) for classification
and regression. It can also be used in unsupervised mode for
assessing proximities among data points.

Usage:
S3 method for class ’formula’:
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,

mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity=FALSE, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)

Ensemble Methods Random Forests

Boston Housing data, again.

Ensemble Methods Random Forests

> rf <- randomForest(x,y)
> print(rf)
>
Call:
randomForest(x = x, y = y)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.26161
% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot(predict(rf), y)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot(predict(rf,newdata=x), y)

Ensemble Methods Random Forests

Out-of-bag error.

> plot(predict(rf), y)
> abline(c(0,1),col=2)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●

●●

●
●

●● ●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●● ●●●

●●
●

●
●●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●● ●

●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●
●

●

●
●

●
●

●

●
●● ●

●● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

10 20 30 40

10
20

30
40

50

predict(rf)

y

Training error.

> plot(predict(rf,newdata=x), y)
> abline(c(0,1),col=2)

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●
●
●●

●
●

●●●●

●

●
●
●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●●●●

●●
●

●
●●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●● ●

●● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

10 20 30 40 50

10
20

30
40

50

predict(rf, newdata = x)

y

Ensemble Methods Random Forests

Try mtry 2

> (rf <- randomForest(x,y,mtry=2))
Call:
randomForest(x = x, y = y, mtry = 2)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 12.17176
% Var explained: 85.58

Try mtry 4

> (rf <- randomForest(x,y,mtry=4))
Call:
randomForest(x = x, y = y, mtry = 4)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.01574
% Var explained: 88.14

Ensemble Methods Random Forests

And mtry 8 and 10.

> (rf <- randomForest(x,y,mtry=8))
Call:
randomForest(x = x, y = y, mtry = 8)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 8

Mean of squared residuals: 9.552806
% Var explained: 88.68

> > (rf <- randomForest(x,y,mtry=10))
Call:
randomForest(x = x, y = y, mtry = 10)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 10

Mean of squared residuals: 9.774435
% Var explained: 88.42

mtry is the only real tuning parameter and typically performance not sensitive
to its choice (can use tuneRF to select it automatically).

Ensemble Methods Random Forests

Variable “Importance”

Tree ensembles have better performance, but decision trees are more
interpretable.
How to interpret a forest of trees ?

Idea: denote by ê the out-of bag estimate of the loss when using the original
data samples. For each variable k ∈ {1, . . . , p},

permute randomly the k-th predictor variable to generate a new set of
samples (X̃1,Y1), . . . , (X̃n,Yn), i.e., X̃(k)

i = X(k)
τ(i), for a permutation τ .

compute the out-of-bag estimate êk of the prediction error with these new
samples.

A measure of importance of variable k is then êk − ê, the increase in error rate
due to a random permutation of the k-th variable.

Ensemble Methods Random Forests

Example for Boston Housing data.

rf <- randomForest(x,y,importance=TRUE)
varImpPlot(rf)

zn

chas

rad

black

indus

tax

age

ptratio

crim

nox

dis

lstat

rm

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25 30 35

%IncMSE

Ensemble Methods Random Forests

Ensemble Methods

Bagging and random forests are examples of ensemble methods, where
predictions are based on an ensemble of many individual predictors.
Many other ensemble learning methods: boosting, stacking, mixture of
experts, Bayesian model combination, Bayesian model averaging etc.
Often gives significant boost to predictive performance.

Ensemble Methods Stacking

Stacking

Also called stacked generalization.
Use the outputs of M learning algorithms as inputs to a combiner
learner.
Often, logistic regression is used as a combiner.

b

b

b

∑

w1

w2

w3

wM

s(.)

P̂(Y = 1|X = x)

1

b

w⊤q + b

q(1) = P̂
(1)(Y = 1|X = x)

q(M) = P̂
(M)(Y = 1|X = x)

q(2) = P̂
(2)(Y = 1|X = x)

q(3) = P̂
(3)(Y = 1|X = x)

Top entries for the $1M Netflix competition used a form of stacking Sill et al, 2009

Ensemble Methods Boosting

Boosting

Ensemble Methods Boosting

Boosting

Greedy ensemble learning algorithm, results in a weighted average of
weak learners fT(x) =

∑T
t=1 βtφ(x; θt) (usually, weak learners φ(x; θt) are

very simple models with low variance and high bias, e.g. decision
stumps).
Can be understood as forward stagewise additive modelling:

Initialise f0(x) = 0.
At iteration t = 1, . . . , T, add a new weighted weak learner into the model:

(βt, θt) = argmin
β,θ

n∑

i=1

L (yi, ft−1(xi) + βφ(xi; θ))

ft(x) = ft−1(x) + βtφ(x; θt)

In practice, update ft(x) = ft−1(x) + νβtφ(x; θt) used instead with ν ∈ (0, 1),
typically ν = 0.1 (shrinkage).

For trees, θ parametrises the split variables and split points at the internal
nodes.

Ensemble Methods Boosting

Types of Boosting

How to solve the subproblem of new weak learner addition depends on the
loss function and is typically independent of the form of weak learners.

L2-Boosting: the squared loss function (regression, yi ∈ R)

L (yi, f (xi)) = (yi − f (xi))
2,

LogitBoost: logistic loss function (binary classification, yi ∈ {−1, 1})

L (yi, f (xi)) = log(1 + exp(−yif (xi))),

AdaBoost: exponential loss function (binary classification, yi ∈ {−1, 1})

L (yi, f (xi)) = exp(−yif (xi)).

Freund and Schapire (1995).

Ensemble Methods Boosting

L2-Boosting

In L2-Boosting, new weak learners are obtained by fitting the residuals:

L (yi, ft−1(xi) + βφ(xi; θ)) = (yi − ft−1(xi)− βφ(xi; θ))
2 = L(yi − ft−1(xi)︸ ︷︷ ︸

ri,t

, βφ(xi; θ))

Initialise f0(x) = 0.
For t = 1, . . . ,T, compute current residuals

ri,t = yi − ft−1(xi),

and fit the residuals {(xi, ri,t)}n
i=1 to obtain the term βtφ(x; θt) to be added

to the expansion.

Ensemble Methods Boosting

AdaBoost

Has an interpretation as reweighting the examples at each iteration based on
the loss so far:

nR̂t =
n∑

i=1

exp (−yi(ft−1(xi) + βφ(xi; θ))) =
n∑

i=1

wi,t exp (−yiβφ(xi; θ)) ,

where wi,t = exp (−yift−1(xi)) is the weight applied to example i.
Assume φ(x; θ) ∈ {−1,+1} (individual classification rules) and denote
φi = φ(xi; θ). Then,

nR̂t = eβ
∑

yi 6=φi

wi,t + e−β
∑

yi=φi

wi,t = (eβ − e−β)
n∑

i=1

wi,t1 (yi 6= φi) + e−β
n∑

i=1

wi,t

Then, the solution at iteration t is given by:
(i) θt = argminθ

∑n
i=1 wi,t1 (yi 6= φ(xi, θ))

(ii) βt = 1
2 log 1−errt

errt
, where errt =

∑n
i=1 wi,t1 (yi 6= φ(xi, θt)) /

∑n
i=1 wi,t

Ensemble Methods Boosting

AdaBoost with decision stumps

The degree of blackness represents the confidence in the red class. The size of
datapoints represents their weight. Decision boundary in yellow.
Left: After 1 iteration, Middle: After 3 iterations, Right: After 120 iterations.

Example from Murphy, p.560; generating script written by R.Stapenhurst

Ensemble Methods Boosting

blackboost: Boosting of Regression Trees

library(mboost)
n <- length(y) ## number of observations
Mvec <- 1:500 ## Mvec is vector with various stopping times
nM <- length(Mvec) ## number of possible stopping times
loss <- numeric(nM) ## loss contains the training error
losscv <- numeric(nM) ## losscv contains the validation error
for (mc in 1:nM){ ## loop over stopping times (not efficient)
yhat <- numeric(n) ## yhat are the fitted values
yhatcv <- numeric(n) ## yhatcv the cross-validated fitted values
M <- Mvec[mc] ## use M iterations
V <- 10 ## 10-fold cross validation

indCV contains the ‘block’ in 1,...,10
each observation falls into

indCV <- sample(rep(1:V,each=ceiling(n/V)), n)
for (cv in 1:V){ ## loop over all blocks

bb <- blackboost(y[indCV!=cv] ~ .,data=x[indCV!=cv,],
control=boost_control(mstop=M))

predict the unused observations
yhatcv[indCV==cv] <- predict(bb,x[indCV==cv,])

}
losscv[mc] <- sqrt(mean((y-yhatcv)^2)) ## CV test error
bb <- blackboost(y ~ .,data=x,control=boost_control(mstop=M))
yhat <- predict(bb,x)
loss[mc] <- sqrt(mean((y-yhat)^2)) ## training error

}

Ensemble Methods Boosting

blackboost: Boosting of Regression Trees
Plot of validation error in red and training error in black as functions of
iteration.
matplot(cbind(loss,losscv), type="p",lwd=2,col=c(1,2),lty=1)
abline(h= sqrt(mean((predict(rf)-y)^2)),lwd=1,lty=2)

0 10 20 30 40 50 60

2
3

4
5

6
7

8

BOOSTING ITERATIONS

LO
S

S

Ensemble Methods Boosting

Boosting: Summary

Boosting is a bias-reduction technique, as opposed to bagging.
Resistant to overfitting (the testing error typically stays flat for a large
number of iterations - but will eventually go up).
Can be understood as functional gradient descent, leading to a generic
framework called gradient boosting.
Relevant libraries: mboost, gbm, xgboost.

Further reading: Hastie et al, Chapter 10; Murphy, Section 16.4.

