Statistical Data Mining and Machine Learning
Hilary Term 2016

Dino Sejdinovic
Department of Statistics
Oxford

Slides and other materials available at:
http://www.stats.ox.ac.uk/~sejdinov/sdmml

Classification and Regression Trees (CART)

@ Denote input domain by X and let the output domain be) = {1....,K}
(classification) or) = R (regression).

@ A decision tree gives a partition of X" into R disjoint sets (regions)
P ={Ri,...,Rr}, such that the fitted decision function is constant on
eachregionR; C X,j=1,...,R,i.e.

ftree(x) = ijvx € Rj-

@ Main strengths: easy to use, easy to interpret.

@ Often serve as a starting point for powerful model combination and
ensemble techniques: bagging, boosting (random forests).

Decision Trees

Example: NHS Direct Self-help Guide

- Colds and flu

-
-
-
-
.
-
-
-
.
-
.
.
-
-
.
.
-
.
-
.
.
®
.
e

-
.
L}

-
.
®
[}
()
.
.
=
®
.
.
.
0]
.
.
L]
.
.
.
.
L]
.
-
-
-
.
.

Arm yals developin) & rash that does | [Dinl 993

| of
ot fade when you aress # s il
tinblet o fnger against A7
o
Are you suffering from a sHifF meck, L o
Pt A o et Wi Tty B GocE) <l
Your eyss anel | or o your fes) very
Py o 1
=
A J
15 thre sneezing, Arunay pois, [0, Selb-care a
& mild temperature, & 1ofe ., and
gerual athws and pains? It could b a comiran cold which
- aatibictics cannat freat effectively.
") Unless the i vy oM, frael or

A o fesling fshsel Rotand | e
swanty? Da you heve 8 high L
ranro (s B°C ue H004°F), &

W Take sirpie palnkillees gtk a1
paracatimel (or for childen e
paeateic paracatamel aral

iur o thelr tempeaturs doar.
& Increase howe much fluid you o
they drink.
 same peaple find that a timgle
tough mediine helgs 1o soothe o
o

Example: NHS Direct Self-help Guide

Are you developing a rash that does not
fade when you press a glass tumbler or finger
against it?

yes no
Are you suffering from a stiff neck,
headache and d¢ you find the light
hurts your eyes and/or you feeling
very sleepy and fonfused?
Emergency
("Dial 999")
yes no
Is there sneeaing, a runny
nose, a mild temperature,
a sore throat,|and general
aches and pa(ns?
Emergency
("Dial 999") ves no
Are you feeljng flushed,
hot and swelaty? Do you
have a high|temperature
(over 38 Cgr100.4 F), a
headache, ds weli as a
runny nose hnd general
aches and pains?
Self-care
yes no
Self-care Self-care
(basic)

Example: Iris Data

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4.4 3.2 1.3 0.2 setosa
5.9 3.0 5.1 1.8 wvirginica
6.3 3.3 6.0 2.5 wvirginica
5.3 3.7 1.5 0.2 setosa
5.5 2.5 4.0 1.3 versicolor
6.1 2.9 4.7 1.4 versicolor
6.1 3.0 4.9 1.8 wvirginica
5.7 2.8 4.5 1.3 versicolor
5.4 3.0 4.5 1.5 versicolor
4.8 3.4 1.6 0.2 setosa
4.6 3.1 1.5 0.2 setosa
4.9 3.1 1.5 0.2 setosa
6.4 2.9 4.3 1.3 versicolor

Previously seen Iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for
50 flowers from each of 3 species of iris. The species are Iris setosa,
versicolor, and virginica.

Decision Trees

@ A decision tree is a hierarchically organized structure, with each node
splitting the data space into regions based on value of a single feature
(attribute).

@ Some terminology:

Parent of a node c is the node with an arrow pointing into c.

Children of a node ¢ are those nodes which have node ¢ as a parent.

Root node is the top node of the tree; the only node without parents.

Leaf nodes are nodes which do not have children.

Stumps are trees with just the root node and two leaf nodes.

A K-ary tree is a tree where each node (except for leaf nodes) has K

children. Usually working with binary trees (K = 2).

o The depth of a tree is the maximal length of a path from the root node to a
leaf node.

@ Partition of X" into R disjoint sets (R, ..
leaves of the tree.

@ On each region R; the same decision/prediction is made: fiee(x) = ; for
all x € R; - typically as a majority vote of the data items associated to that
leaf (classification) or as their mean (regression)

Example: Iris Data

., Rg) is determined by the

Decision tree Induced partitioning

w0
P4 + H
o + +
HH A+
- +
Petal.Length< 2.45 - S,
& +HH ++
H+ o+
H+ -+
¥
= n +
T - +H
£ +
H
. o
Petal.Width< 1.75 kot
setosa L o |
o
. o
° oamo O setosa
oo versicolor
versicolor virginica OEEDRE + virginica
O @
T T T T T T T
1 2 3 4 5 6 7

Petal.Length

Partition of X into R disjoint sets (R, ...
the tree.

,Rg) is determined by the leaves of

Decision functions based on trees Partition Estimation

@ For regression problems, the parameterized function is

R
flx) = Zﬁjl[xenf]’ @ |deally, would like to find partition that achieves minimal risk: lowest
=t mean-squared error for prediction or misclassification rate for
Using squared loss, optimal parameters are: classification.
@ Number of potential partitions is too large to search exhaustively.
Aj — M @ ‘Greedy’ search heuristics for a good partition:
> Lper) e Start at root.

e Determine best feature and value to split.
@ Recurse on children of node.

@ For classification problems, the estimated probability of each class k in :
e Stop at some point.

region R, is simply:
Ao 2 10 = k) 1er

19
! Zi]]-[X,ER/-]

@ These estimates can be regularized as well.
Growth Heuristic for Regression Trees Boston Housing Data

@ Startwith R, = X = Re.
@ Foreachfeaturej=1,...,p, and for each value v € R that we can split

on: crim per capita crime rate by town
Q Split data set: zZn proportion of residential land zoned for lots over 25,000 sqg.ft
)) indus proportion of non-retail business acres per town
I« ={i :xl-(’> < v} I. ={i: x}’) > v} chas Charles River dummy variable
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
@ Estimate parameters: age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centres
Ziel< Yi Z,-€,> Yi rad index of accessibility to radial highways
B< = W B> = W tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)"2 where B is the proportion of blacks by town
@ Compute the quality of split, e.g., the square loss: lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s

D =B+ i—Bs)

i€l iel . .
< ” @ Predict median house value.

© Choose split, i.e., feature j and value v, with minimal loss.
@ Recurse on both children, with datasets (x;,y:)ic;. and (xi, y;)ier. -

Boston Housing Data Boston Housing Data

@ Overall, the best first split is on variable rm, average number of rooms per
dwelling.
@ Final tree contains predictions in leaf nodes.

rm< 6.941
T

MEDIAN HOUSE PRICES
MEDIAN HOUSE PRICES

Istat>E14.4 rm< 7.437

--------f

crim>$7.393 nox>=0.682¢

MEDIAN HOUSE PRICES
MEDIAN HOUSE PRICES

144 3335 21.9 459

2 2 s ol erim>16.992 dis>=1.385
A 11log 1714 m<b5a3 |
LOG(CRIME) LOG(CRIME) 4558
21.63 27.43
Growth Heuristics for Classification Trees Growth Heuristics for Classification Trees
@ For binary classification, the proportion of class 1 items in node 8 -3
corresponding to region R; is given by ©
A Zx]]'(yl =]‘>]]'[xi€Rj] g) 0
| = Lo
! > Liery)

@ A splitis good if both sides are more pure, i.e. 3, is closer to 0 or 1. z‘:; s -3 .
@ Different measures of node impurity: § . L%
o Misclassification error: 1 —max{3;,1— 3 }. & 2 s
e Gini impurity: 25, (1 — 8;1). . o
o Entropy: —f log B — (1 — Bn) log(1 — f). o °
@ Gini and entropy preferred: differentiable and produce purer nodes. S - -

@ Extension to multi-class: ’ — Gini coefficient
~ o --- Entropy
e Misclassification error: 1 — max; 5. S - - o

iscl cation erro s T T T T T T
o Gini |mp-ur|ty.KZkA:1 Bi(1 = Bi). 0.0 0.2 04 0.6 08 10
e Entropy: — >, i log Bi.

@ Stops once a node has insufficient number of items, or is pure. >

Misclassification error?

Example: Leukemia Prediction

3500
3500

3000
3000

za00
2500

genes
2000
=)
genes
z00g

1300
1500

1000
.
1000
'

500
500

samples samples

Leukemia Dataset: Expression values of 3541 genes for 47 patients with
Leukemia ALL subtype (left) and 25 patients with AML (right).

Model Complexity

@ When should tree growing be stopped?

@ Will need to control complexity to prevent overfitting, and in general find
optimal tree size with best predictive performance.

@ A regularized objective
R°™(T) + C x size(T)

@ Grow the tree from scratch and stop once the criterion objective starts to
increase.

o First grow the full tree and prune nodes (starting at leaves), until the
objective starts to increase.

@ Second option is preferred as the choice of tree is less sensitive to
“wrong” choices of split points and variables to split on in the first stages
of tree fitting.

@ Use cross-validation to determine optimal C.

Decision Trees Decision Trees

Example: Leukemia Prediction

@ Tree found is of depth 2.

@ Very interpretable as it selects 3 out of 4088 genes and bases prediction
only on these.

X.2481< 0.9985

X.172>3-0.3118 X.35<D.7172

0 1

Model Complexity

library (rpart); library (MASS); data(Pima.tr)
rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
control=rpart.control (xval=10)) ## 10-fold x-val
plotcp (rp) #visualise x-val results as a function of the complexity parameter
#select complexity parameter .029 since this results in lowest x-val
rp2 <- prune.rpart (rp,.029)
plot (rp2); text (rp2)

size of tree

1 2 3 4 5 8
L L L L L L

glu< 123.5
t

1.0

ped< 0.3095

No

© _| W glu<|166 bmi< 28.65
)

No Yes

0.8
I

X-val Relative Error

T T T T T T
Inf 0.19 0.11 0.066 0.029 0.012

Ensemble Methods Bagging

Bagging

Bootstrap for Classification Trees

@ The bootstrap is a way to assess the variance of estimators.
@ Fit multiple trees, each on a bootstrapped sample. This is a data set
obtained by sampling with replacement » times from training set.
> n <— nrow(Pima.tr)
> bss <- sample(l:n, n , replace=TRUE)
> sort (bss)
[1] 24456 7910 11 12 12 12 12 13 13 15 15 20

> tree_boot <- rpart(Pima.tr[bss,8] ~ ., data=Pima.tr[bss,-8],
control=rpart.control (xval=10)) ## 10-fold CV

glu< ‘123.5 lu< 123.5

ped<|0.348

No

glu< 164.5 bmi<[28.65

No Yes
No Yes

Model Variability

glu< 123.5
T

ped< (.3095

glu<|166

No

bmi<

Yes

[28.65

Yes

@ Is the tree ‘stable’ if training data were slightly different?

Bootstrap for Regression Trees

MEDIAN HOUSE PRICE

50

40

30

20

10

Regression for Boston housing data.
Predict median house prices based only on crime rate.
Use decision stump—the simplest tree with a single split at root.

LOG(CRIME)

13.44

cnnm>F1918

24.44

Bootstrap for Regression Trees

@ We fit a predictor f(x) on the data {(x;,)}/,
@ Assess the variance of f(x) by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators
Fh(x), b=1,...,B

@ Each tree /? is fitted on the resampled data (xj,,¥;,)l_, where each j; is
chosen randomly from {1,...,n} with replacement.

3 - ® o o « ow 000 00
© s

40

20

30
I

MEDIAN HOUSE PRICE
20
I

MEDIAN HOUSE PRICE
20

LOG(CRIME) LOG(CRIME)

Bagaing
Bagging

40
40

MEDIAN HOUSE PRICE
20

MEDIAN HOUSE PRICE
20

LOG(CRIME) LOG(CRIME)

@ Bagging smooths out the drop in the estimate of median house prices.

@ Bagging reduces the variance of predictions, i.e. when taking
expectations over a random dataset D:

Ep[(f(x) = Ep[f()])*] > Ep|(fsue(x) — Ep[faae(x)])’]

Bagging

@ Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples.

@ Forb=1,...,B:
@ Draw indices (ji,...,j.) fromthe set {1,...,n} with replacement.
@ Fit the model, and form predictor f°(x) based on bootstrap sample

(le7yj])7 s (‘xjn7yj/1)

@ Form bagged estimator

Variance Reduction in Bagging

@ Suppose, in an ideal world, our estimators f are each based on different
independent datasets of size n from the true joint distribution of X, Y.

@ The aggregated estimator would then be

1A _

Jug(x) = 3 > F(x) = f(x) =Ep[f(x)] asB— oo
b=1

where expectation is with respect to datasets of size n.
@ The squared-loss is:

Ep[(Y — fu(X))*|X = 2] = Ep[(Y = F(X))*|X = x] + En[(F(X) — fue (X))*|X =]
— Ep[(Y —f(X))’|X =x] as B — oo.

Aggregation reduces the squared loss by eliminating variance of f(x).

@ In bagging, variance reduction still applies at the cost of a small increase
in bias.

@ Bagging is most useful for flexible estimators with high variance (and
low bias).

Variance Reduction in Bagging Out-of-bag Test Error Estimation

@ How well does bagging to? Can we estimate generalization performance,
and tune hyperparameters?

@ Answer 1: cross-validation.

@ Deeper trees have higher complexity and variance.
@ Compare bagging trees of depth 1 and 3.

i=1 =2 =3 i=4 =5 =6 =7 =8 =9 =10 i=11 =12

MOOOOOOe e 000

50
8
8
8
3

50

L
8
8
8

=~ ®©®®® 6800000

= ©®@©®000/0000 06

20

v=4

0CO0OlPOE®®®E O ®

10

@ Foreachv=1,...,V,

- -2 o 2 4 - 2 o 2 ‘ o fit fz,, 0N the training samples.
e predict on validation set.

@ Compute the CV error by averaging the loss across all test observations.

Out-of-bag Test Error Estimation Out-of-bag Test Error Estimation
@ But to fit fz,, on the training set for each v = 1,....,V, we have to train on @ Idea: test on the “unused” data points in each bootstrap iteration to
B bootstrap samples! estimate the test error.

\

il i:ﬂZ i3 i4 i=ﬂS i6 i:E7 i=OS i=ag i=;LO i:j_l |:j_2 - i= 5 i=3 iz4 =5 i=6 =7 i=8 i=9 izbo iaﬁl %52 h=1
i i iiiiiiilic g ©000® 000000
S RORORONORORONONORONONON'=

A R - — 0000000 OOOO0 b
e O S ONONONONONONCGHNONONONONON

© e alo o o e o o o o o b ©©0Oo®00 0000 e:bs
R R ©®®00000®00 0
o o e o o ol o o & o e e b5 QOO@@@@OOO@@@FS
I = ©© 000000 ©0O®E b
R A A T S = L0000 OEOOE® Y

A 1 A
@ Answer 2: Out-of-bag test error estimation. FoP0n) = 4 >, [

be{3,4,8,10}

Out-of-bag Test Error Estimation Out-of-bag Test Error Estimation

@ |dea: test on the “unused” data points in each bootstrap iteration to

estimate the test error. .
@ Foreachi=1,...,n, the out-of-bag sample is:

<

izl i=2 =3 =4 i=5 (=6 i=7 i@ i=9 izg) iabl i=CBZ - B; = {b : x; is not in training set} C {1,...,B}.
—=>© 0 ©0®©®©0®©®0®® @ b=
O @@ o 0 0 O o @ O O b=s @ Construct the out-of-bag estimate at x;:
O®©®®©0®©®©®®®® O b4 - =y
GNONORORONORCNORONONOROR=:) = g 2P
ONONONONONONONCGHONORCONON ;. b,
© ©®®©® O 000®®0O0O0 QO ¢ o Out-of-bad risk.
—00®®©®®000060 6 © - Hrorbag et e
© © 00 00®®®0O0® @ b R =;ZL(yi,f°° (x:))
— 00 000®©®®®®®® @b =
) =5 3)
b€{2,8,10}
Out-of-bag Test Error Estimation Example: Boston Housing Dataset

@ Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.

@ We need |B;| to be reasonably large foralli =1,...,n. _ : , _
@ Use the entire dataset with p = 13 predictor variables.

@ The probability 7°°° of an observation NOT being included in a bootstrap

sample (ji,...,Jj.) (and hence being ‘out-of-bag’) is: n <- nrow(BostonHousing) ## n samples
X <- BostonHousing[,-14]
n 1 1 Y <- BostonHousing[,14]
- B < 100
% =] <1 -) =¥ - ~0.367. naxdepth <- 3
i=1 n e prediction_oob <- rep(0,length(Y)) ## vector with oob predictions
numbertrees_oob <- rep(0,length(Y)) ## number pf oob trees
% ~ for (b in 1:B) { ## loop over bootstrap samples
° Hence EHBIH ~ 0.367B subsample <- sample(l:n,n,replace=TRUE) ## "in-bag" samples
@ In practice, number of bootstrap samples B is typically between 200 and outotbag <= (1in) [msubsampie] ch pip b touElOTTRAgT sanbles
. ~ K it tree on "in-bag" samples
1000, meaning that the number |B;| of out-of-bag samples will be treeboot <- rpart(Y ~ ., data=X, subset=subsample,
H H _ control=rpart.control (maxdepth=maxdepth,minsplit=2)
approximately in the range 70 — 350. 44 predict on oob-samples
@ The obtained test error estimate is asymptotically unbiased for large prediction_oob[outofbag] <- prediction_oob[outofbag] +
. predict (treeboot, newdata=X[outofbag,])
number B of bootstrap samples and large sample size n. numbertrees_oob [outofbag] <- numbertrees_oob[outofbag] + 1

}
final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob

Ensemble Methods Bagging Ensemble Methods Bagging

Example: Boston Housing Dataset Example: Boston Housing Dataset
plot (prediction_oob, Y, x1lab="PREDICTED", ylab="ACTUAL")
For depth d = 1. For depth d = 10. @ Out-of-bag error as a function of tree depth d:
treedepthd | 1 2 3 4 5 10 30

single tree f 60.7 448 328 312 277 265 273
baggedtreesfgag 434 270 228 215 20.7 20.1 20.1

@ Without bagging, the optimal tree depth seems to be d = 10.
@ With bagging, we could also take the depth up to d = 30.

50
I

40

30
I

Summary:
@ Bagging reduces variance and prevents overfitting
@ Often improves accuracy in practice.

@ Bagged trees cannot be displayed as nicely as single trees and some of
the interpretability of trees is lost.

ACTUAL
ACTUAL

20

10
1

20 25 30 10 20 30 40

PREDICTED PREDICTED

Random Forests and Extremely Randomized Trees

@ Random forests are similar to bagged decision trees with a few key
differences:
e For each split point, the search is not over all p variables but just over mtry
randomly chosen ones (where e.g. mtry = |p/3])

@ No pruning necessary. Trees can be grown until each node contains just
Ran do m FO re Sts J very few observations (1 or 5).
e Random forests tend to produce better predictions than bagging.
o Results often not sensitive to the only tuning parameter mtry.
o Implemented in randomForest library.

@ Even more random methods, e.g. extremely randomized trees:
e For each split point, sample mtry variables each with a random value to
split on, and pick the best one.
e Often works even when miry equals 1!
@ Often produce state-of-the-art results, and top performing methods in
machine learning competitions.

Breiman (2001), Geurts et al (2006)

Random Forests

TABLE 2

Random Forests

Comparison of 179 classifiers on 121 datasets. Random forests come top

with SVMs close behind.

Test set misclassification error (%)

Data set Forest Single tree
Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6
Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle x103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

From Breiman, Statistical Modelling: the two cultures, 2001.

| Rank ‘ Acc. ‘ K | Classifier
32.9 82.0 63.5 parRF_t (RF)
33.1 82.3 | 63.6 rf_t (RF)

36.8 81.8 62.2
38.0 81.2 60.1
39.4 81.9 62.5
39.6 82.0 62.0
40.3 81.4 61.1
42.5 81.0 60.0
42.9 80.6 61.0
44.1 79.4 60.5

svimn_C (SVM)
svmPoly_t (SVM)
rforest_R (RF)
elm_kernel_m (NNET)
svmRadialCost_t (SVM)
svmRadial t (SVM)
C5.0_t (BST)
avNNet_t (NNET)

Ensemble Methods Random Forests

From Delgado et al, 2014

Ensemble Methods Random Forests

> randomForest package:randomForest
Classification and Regression with Random Forest

Description:

R Documentation

Looking at the Boston Housing data again (and at the help page for
randomForest first).

"randomForest’ implements Breiman’s random forest algorithm (based
on Breiman and Cutler’s original Fortran code) for classification
and regression. It can also be used in unsupervised mode for

library (randomForest)
library (MASS)
data (Boston)

y <- Boston[,14]
x <- Boston[,1:13]

?randomForest

assessing proximities among data points.

Usage:
S3 method for class ’formula’:
randomForest (formula, data=NULL, ..., subset,

Default S3 method:

randomForest (x, y=NULL, xtest=NULL, ytest=NULL,
mtry=if (!is.null(y) && !is.factor(y))
max (floor (ncol(x)/3), 1) else floor (sqgrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff,
else ceiling(.632*nrow(x)
nodesize = if (!is.null(y) && !is.factor(y))
importance=FALSE, localImp=FALSE, nPerm=1,
proximity=FALSE, oob.prox=proximity,

sampsize = if (replace) nrow(x)

norm.votes=TRUE, do.trace=FALSE,

keep.forest=!is.null(y) && is.null (xtest),

keep.inbag=FALSE, ...)

na.action=na.fail)

corr.bias=FALS

Ensemble Methods Random Forests

Boston Housing data, again.

00 08

= otmpotiol
OEIED!@IIEIﬁ
)l [51)l i) &

]
il

L1000
Pl b
] e oy
R
L

l

CO
-]
%]
FE
h] L
g
e
Al

il

=]
|
[]
[}
|

Fi

3

T
¥

I LR

ﬁ

lemDmlﬂ

[
A
A
%/
i (-]
 (an!
=
MR E
il

200 700

o

IIDIEQ

"
S

[]
b |
Vi
il
B
[~]

]
B E0EE @

A&
1]k

g

sl B
m

%f

®
N
N

Ensemble Methods Random Forests

Out-of-bag error.

> plot (predict(rf), v)
> abline(c(0,1),col=2)

10 20 30 40

predict(rf)

Training error.

> plot (predict (rf,newdata=x), vy)
> abline(c(0,1),

@
8

&

CHLT TR L3 G G LH LEE

™

&

0 6 04 08

20

(il 1P e TR Y R

5

ul

g

4 22

b
-

o

1

Hlala b4 31 B YA W] T

3

col=2)

20 30

predict(rf, newdata = x)

Ensemble Methods Random Forests

> rf <- randomForest (x,y)
> print (rf)
>
Call:
randomForest (x = x, y = V)
Type of random forest:
Number of trees:

No. of variables tried at each split:

Mean of squared residuals:
% Var explained:

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot (predict(rf), y)
> abline(c(0,1),col=2)

regression
500
4

10.26161
87.84

Same if treating the training data as new data

> plot (predict (rf,newdata=x), vy)

Ensemble Methods

Trymtry 2

> (rf <- randomForest (x,y,mtry=2))
Call:
randomForest (x = x, y = vy, mtry = 2)
Type of random forest:
Number of trees:

No. of variables tried at each split:

Mean of squared residuals:
% Var explained:

Try mtry 4

> (rf <- randomForest (x,y,mtry=4))
Call:
randomForest (x = x, y = vy, mtry = 4)
Type of random forest:
Number of trees:

No. of variables tried at each split:

Mean of squared residuals:
% Var explained:

Random Forests

regression
500
2

12.17176
85.58

regression
500
4

10.01574
88.14

Ensemble Methods Random Forests

And mtry 8 and 10.

> (rf <- randomForest (x,y,mtry=8))
Call:
randomForest (x = x, y = vy, mtry = 8)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 8

Mean of squared residuals: 9.552806

o

% Var explained: 88.68

> > (rf <- randomForest (x,y,mtry=10))
Call:
randomForest (x = x, y =y, mtry = 10)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 10

Mean of squared residuals: 9.774435
% Var explained: 88.42

mtry is the only real tuning parameter and typically performance not sensitive
to its choice (can use tuneRF to select it automatically).

Example for Boston Housing data.

rf <- randomForest (x,y, importance=TRUE)
varImpPlot (rf)

m °
Istat 0
dis °

nox o

crim °

ptratio °

age o

tax °

indus o

black °

rad °

chas °

zn o

5 10 15 20 25 30 35

%IncMSE

Variable “Importance”

@ Tree ensembles have better performance, but decision trees are more
interpretable.

@ How to interpret a forest of trees ?
Idea: denote by ¢ the out-of bag estimate of the loss when using the original
data samples. For each variable k € {1,...,p},
@ permute randomly the k-th predictor variable to generate a new set of
samples (X;,Y}),...,(X,,Y,), i.e., 5(,.(") = Xik(z) for a permutation 7.
@ compute the out-of-bag estimate ¢, of the prediction error with these new
samples.

A measure of importance of variable k is then ¢; — ¢, the increase in error rate
due to a random permutation of the k-th variable.

Ensemble Methods

@ Bagging and random forests are examples of ensemble methods, where
predictions are based on an ensemble of many individual predictors.

@ Many other ensemble learning methods: boosting, stacking, mixture of
experts, Bayesian model combination, Bayesian model averaging etc.

@ Often gives significant boost to predictive performance.

Stacking

@ Also called stacked generalization.

@ Use the outputs of M learning algorithms as inputs to a combiner

learner.

@ Often, logistic regression is used as a combiner.

¢ =PO(L=1|X =2) @

¢@ =p® 11X = ‘b _/_
wy
q® = P® 11X =x) W2 s(.)
w7 > P(Y =1|X =x)
.
. wlg+b

¢ = PONTY = 1|X = 2)

Top entries for the $1M Netflix competition used a form of stacking Sill et al, 2009

Boosting

@ Greedy ensemble learning algorithm, results in a weighted average of
weak learners fr(x) = Z,Tzl Bip(x; 0,) (usually, weak learners ¢(x; 6,) are

very simple models with low variance and high bias, e.g. decision

stumps).

@ Can be understood as forward stagewise additive modelling:

e Initialise fo(x) = 0.

o Atiterationr=1,...,T, add a new weighted weak learner into the model:

(B 0) = ar%n;inZL(y[,f,_l(x,-) + Bo(xi; 0))
’ i=1
filx) = fis(x) + Biop(x; 6r)

In practice, update f;(x) = fi—1(x) + vS:¢(x; 0;) used instead with v € (0, 1),

typically v = 0.1 (shrinkage).

@ For trees, 0 parametrises the split variables and split points at the internal

nodes.

Ensemble Methods Boosting

Boosting

Types of Boosting

How to solve the subproblem of new weak learner addition depends on the
loss function and is typically independent of the form of weak learners.

@ [,-Boosting: the squared loss function (regression, y; € R)

L(yi.f(x:) = (yi —f(x:))?,

@ LogitBoost: logistic loss function (binary classification, y; € {—1,1})

L (yirf (xi)) = log(1 + exp(—yif (xi))),

@ AdaBoost: exponential loss function (binary classification, y; € {—1,1})

L (yi,f(x;)) = exp(—yif (xi))-

Freund and Schapire (1995).

L,-Boosting AdaBoost

Has an interpretation as reweighting the examples at each iteration based on

In L,-Boosting, new weak learners are obtained by fitting the residuals: the loss so far:

L(yﬁﬁ*l(xi) +ﬁ¢(xh9)) = (yl _ﬁfl(xi) - ﬂ¢(xla0))2 = L(y’ _ﬁfl(xi)aﬁd)(xi;e)) nRt — Zexp yl(ft (xl) -+ /6¢ x” Zwltexp ylﬁ¢(xl,)) ,

Tiyt i=1 i=1

where w; , = exp (—yfi—1(x;)) is the weight applied to example .

@ Initiali =0.
nitialise fo(x) = 0 _ @ Assume ¢(x;0) € {—1,+1} (individual classification rules) and denote
@ Forr=1,...,T, compute current residuals ¢ = ¢(x;;0). Then,

_ftil(Xi)? nR, = ¢&° Z Wi,t+€76 Z Wi = Zw, A (i # &) + BZW,[
and fit the residuals {(x;, ;,)}"_, to obtain the term j,¢(x; ¢,) to be added Yi i Yi=oi
to the expansion. @ Then, the solution at iteration ¢ is given by:
(i) 6= argmine > iz Wil (i # ¢(xi, 0))
(i) B = %log er?rr' where err, = 3" wi 1 (yi # ¢(xi,0)) / D0, wi

Ensemble Methods Boosting Ensemble Methods Boosting

AdaBoost with decision stumps blackboost: Boosting of Regression Trees

library (mboost)

n <- length(y) ## number of observations

Mvec <- 1:500 ## Mvec is vector with various stopping times

nM <- length (Mvec) ## number of possible stopping times

loss <— numeric (nM) ## loss contains the training error

losscv <- numeric(nM) ## losscv contains the validation error

for (mc in 1:nM) { ## loop over stopping times (not efficient)
yhat <- numeric(n) ## yhat are the fitted values
yhatcv <- numeric(n) ## yhatcv the cross-validated fitted values
M <- Mvec[mc] ## use M iterations
VvV <- 10 ## 10-fold cross validation

indCV contains the ‘block’ in 1,...,10
each observation falls into
indCV <- sample(rep(l:V,each=ceiling(n/V)), n)
for (cv in 1:V)({ ## loop over all blocks
bb <- blackboost (y[indCV!=cv] ~ .,data=x[indCV!=cv,],
o o control=boost_control (mstop=M))
The degree of blackness represents the confidence in the red class. The size of ## predict the unused observations
datapoints represents their weight. Decision boundary in yellow.) vhatev[indCv==cv] <= predict (bb,x[indCV==cv,])
Left: After 1 iteration, Middle: After 3 iterations, Right: After 120 iterations. losscvimc] <- sqrt(mean((y-yhatcv)”2)) ## CV test error
bb <- blackboost(y ~ .,data=x,control=boost_control (mstop=M))
yhat <- predict (bb, x)
loss[mc] <- sgrt(mean((y-yhat)”2)) ## training error

2

Example from Murphy, p.560; generating script written by R.Stapenhurst

blackboost: Boosting of Regression Trees Boosting: Summary

Plot of validation error in red and training error in black as functions of
iteration.

matplot (cbind(loss,losscv), type="p",lwd=2,col=c(1l,2),1lty=1)
abline (h= sqgrt (mean((predict (rf)-y)"2)),lwd=1l,1lty=2)

@ Boosting is a bias-reduction technique, as opposed to bagging.

@ Resistant to overfitting (the testing error typically stays flat for a large
number of iterations - but will eventually go up).

@ Can be understood as functional gradient descent, leading to a generic
framework called gradient boosting.

@ Relevant libraries: mboost, gbm, xgboost.

LOSS
5

Further reading: Hastie et al, Chapter 10; Murphy, Section 16.4.

BOOSTING ITERATIONS

