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Performance Evaluation Motivating example

Example: Spam Dataset

A data set collected at Hewlett-Packard Labs, that classifies 4601 e-mails as
spam or non-spam. 57 variables indicate the frequency of certain words and
characters.
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library (kernlab)
data (spam)

dim (spam)

1] 4601 58

spam[1l:2,]
make address all num3d our over remove internet order mail receive will
0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 0 0.00 0.00 0.64
0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 0 0.94 0.21 0.79
people report addresses free business email you credit your font num000
0.00 0.00 0.00 0.32 0.00 1.29 1.93 0 0.96 0 0.00
0.65 0.21 0.14 0.14 0.07 0.28 3.47 0 1.59 0 0.43
money hp hpl george numé650 lab labs telnet num857 data num4l5 num85
0.00 © 0 0 0 0 0 0 0 0 0 0
0.43 0 0 0 0 0 0 0 0 0 0 0
technology numl999 parts pm direct cs meeting original project re edu table
0 0.00 0 0 0 0 0 0 0 0 00
0 0.07 0 0 0 0 0 0 0 0 00
conference charSemicolon charRoundbracket charSquarebracket charExclamation
0 0 0.000 0 0.778
0 0 0.132 0 0.372
charDollar charHash capitalAve capitallong capitalTotal type
0.00 0.000 3.756 61 278 spam
0.18 0.048 5.114 101 1028 spam

str (spam$type)
Factor w/ 2 levels "nonspam","spam": 2 2 2 2 2 2 2 2 2 2 ...
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Spam Dataset

Use logistic regression to predict spam/not spam.
## let Y=0 be non-spam and Y=1 be spam.
Y <- as.numeric (spam$type)-1

X <- spam[ ,-ncol (spam) ]

gl <- glm(Y ~ ., data=X,family=binomial)



Spam Dataset

How good is the classification?

> table (spam$type)
nonspam spam
2788 1813
> proba <- predict (gl,type="response")
> predicted_spam <- as.numeric( proba>0.5)
> table (predicted_spam,Y)
Y
predicted_spam 0 1
0 2666 194
1 122 1619
> predicted_spam <- as.numeric( proba>0.95)
> table (predicted_spam,Y)
Y
predicted_spam 0 1
0 2766 810
1 22 1003

Advantage of a probabilistic approach: predictive probabilities give
interpretable confidence to predictions. Soft classification rules for other
classifiers, e.g., support vector machines can be poorly calibrated if we are to
interpret them as probabilities.

Spam Dataset

Results for training and test set:

> predicted_spam_lr_train <- as.numeric (proba_train > 0.95)
> predicted_spam_lr_test <- as.numeric (proba_test > 0.95)

> table (predicted_spam_lr_train, Y[train])

predicted_spam_lr_train 0 1
0 1401 358
1 8 533

> table (predicted_spam_lr_test, Y[test])
predicted_spam_lr_test 0 1

0 1357 392

1 22 530

Note: testing performance is worse than training performance.
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Spam Dataset

@ We are viewing the prediction error on the training set. Not necessarily
representative of the generalization ability.
@ Separate in training and test set 50/50.

n <- length (Y)
train <- sample( n, round(n/2) )
test<-(1l:n) [-train]

@ Fit only on training set and predict on both training and test set.

gl <= glm(Y[train] ~ ., data=X[train,],family=binomial)

proba_train <- predict (gl,newdata=X[train,],type="response")
proba_test <- predict(gl,newdata=X[test,],type="response")

Performance Evaluation Motivating example

Spam Dataset

Compare with LDA.

library (MASS)
lda_res <- lda(x=X[train,],grouping=Y[train])

proba_lda_test <- predict (lda_res,newdata=X[test,]) $posterior[,2]
predicted_spam_lda_test <- as.numeric(proba_lda_test > 0.95)

> table (predicted_spam_lr_test, Y[test])

predicted_spam lr_test 0 1
0 1357 392
1 22 530

> table (predicted_spam_lda_test, Y[test])

predicted_spam_lda_test 0 1
0 1361 533
1 18 389

@ LDA has a larger number of false positives but a smaller number of false
negatives.
@ Above results are for a single threshold (0.95) - how to keep track of what
happens across multiple thresholds?
e More generally, how to compare the classifiers fairly when the number of
positive and negative examples is very different?



Performance Measures

@ Confusion matrix:

True state | 0 1

Prediction 0 # true negative # false negative
1 # false positive  # true positive
Accuracy: (TP + TN)/(TP + TN + FP + FN).
Error rate: (FP + FN)/(TP + TN + FP + FN).
Sensitivity (true positive rate): 7P/(TP + FN).
Specificity (true negative rate): TN /(TN + FP).
False positive rate (1-Specificity): FP/(TN + FP).
Precision: TP/(TP + FP).
Recall (same as Sensitivity): 7P/(TP + FN).
F1: harmonic mean of precision and recall.

@ As we vary the prediction
threshold ¢ from 0 to 1:

. . class 0 class 1
e Specificity varies from 0 to 1. ‘ ‘
o Sensitivity goes from 1 to 0.
high S high
R minimize error o
sensitivity specificity

Performance Evaluation Performance Measures and ROC

R library ROCR contains various performance measures, including AUC.

>
>
>
>
>
>
>
>
>
>
[1
>
>
[1

library (ROCR)

pred_1lr
perf <-

<- prediction (proba_test,Y[test])
performance (pred_lr, measure = "tpr", x.measure = "fpr")

plot (perf, col='red’, lwd=2)
pred_lda <- prediction (proba_lda_test,Y[test])

perf <-

performance (pred_lda, measure = "tpr", x.measure = "fpr")

plot (perf,col='"blue’, add=TRUE, lwd=2)
abline (a=0,b=1)

auc_lda
auc_lda

<- as.numeric (performance (pred_lda, "auc")@y.values)

] 0.9472542
auc_lr <- as.numeric (performance (pred_lr, "auc")Qy.values)

auc_lr

] 0.9673279

Performance Evaluation Performance Measures and ROC

ROC (Receiver Operating Characteristic) Curves

ROC curve: plot TPR (sensitivity) vs FPR (1-specificity). LDA = blue; LR = red.
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LR beats LDA on this dataset in terms of the area under ROC (AUC):
probability that the classifier will score a randomly drawn positive
example higher than a randomly drawn negative example. Also called
Wilcoxon-Mann-Whitney statistic.

Validation and Model Selection

Validation and Model Selection




Generalization

@ Generalization ability: what is the out-of-sample error of learner f?
@ training error # testing error.

@ We learn f by minimizing some variant of empirical risk R°™(f)- what can
we say about the true risk R(f)?

@ Two important factors determining generalization ability:

o Model complexity
e Training data size

Learning Curves

overfit overfit

testing error

testing error

training error

prediction error
prediction error

training error

training dataset size training dataset size

Fixed model complexity, varying dataset size.
Two models: one simple, one complex. Which is which?

Learning Curves

Prediction error

A Underfit

Overfit

Test
error

Just right

Training error

Model complexity/flexibility

Fixed dataset size, varying model complexity.

Bias-Variance Tradeoff

@ Where does the prediction error come from?
@ Example: Squared loss in regression: X = R”, ) = R,

L(Y,f(X)) = (Y = f(X))*

@ Optimal f is the conditional mean:

fu(x) =E[Y|]X =x]

@ Follows from R(f) = ExE [(Y —f(X))z‘ X} and

E[(v =7 X)) x =+]
= E[VX=x]-2f(0E[Y|X=x]+f(x)
= Var[Y|X =]+ (E[Y]| X =x] —f(x))*.

2



Bias-Variance Tradeoff

@ Optimal risk is the intrinsic conditional variability of ¥ (noise):

R(f.) = Ex [Var [Y|X]]

@ Excess risk:

R() = R(f) = Bx |[(F(X) ~ £.(X))?]

@ How does the excess risk behave on average?

@ Consider a randomly selected dataset D = {(X;, ¥;)}7_, and () trained
on D using a model (hypothesis class) H.

B [RG™) ~ RG] = Eox | (/P00 ~£.00) ]
= ExEp {(f“’) (X) ~ £ <X))1 .

Learning Curves

testing error
testing error

trAiming error

prediction error
prediction error

Traifing error
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training dataset size training dataset size

Bias-Variance Tradeoff

@ Denote f(x) = Epf(P)(x) (average decision function over all possible
datasets)

o | (1200 - £.00)| =B | (F200 -700)) | + G0 - £.00)
Bias% (H,n)

Vary (H,n)

Now,
EDR(}‘(D)) = R(f.) + ExVarx(H,n) + IEXBiasi(’H, n)

Where does the prediction error come from?
@ Noise: Intrinsic difficulty of regression problem.

@ Bias: How far away is the best learner in the model (average learner over
all possible datasets) from the optimal one?

@ Variance: How variable is our learning method if given different datasets?

Building models to trade bias with variance

Underfit:
high bias
low variance

Overfit:
low bias
high varianc

Test
error

Just right

Prediction error

Training error

Model complexity/flexibility

@ Building a machine learning model involves trading between its bias and
variance.

e Bias reduction at the expense of a variance increase: building more complex
models, e.g. adding nonlinear features and additional parameters,
increasing the number of hidden units in neural nets, using decision trees
with larger depth.

e Variance reduction at the expense of a bias increase: increasing the
regularization parameter, early stopping, using k-nearest neighbours with
larger k.



Validation and Model Selection Validation and Cross-Validation Validation and Model Selection Validation and Cross-Validation

Empirical vs True Risk

@ In general,
R(f) = R°™P(f) + overfit penalty.

@ Overfit penalty depends on the complexity of the model (VC analysis).

H : _ : : @ Regularization: approximate the overfit penalty. More complex the

@ (Cross-)Validation: try to estimate R(f) directly.
@ For any example not used in training:

E [L (Ytest, [ (xtest))] = R(f).

@ But for examples used in training:

E [L (yrainf (xtrain))] 7 R(f).

Validation and Model Selection Validation and Cross-Validation Validation and Model Selection Validation and Cross-Validation

Optimizing Tuning Parameters

@ How can we optimize generalization ability,
via optimizing choice of tuning parameters,
model size, and learning parameters?

@ Suppose we have split data into training/test
set.

@ Test set can be used to determine
generalization ability, and used to choose
best setting of tuning parameters/model
size/learning parameters with best
generalization.

@ Once these tuning parameters are chosen,
still important to determine generalization
ability, but cannot use performance on test
set to gauge this anymore!

@ |dea: split data into 3 sets: training set, test
set, and validation set.

Validation error

@ Out-of-sample average loss. For a dataset {x;, y;}'_, unseen in training

1 v
val _ S (%
Training set 0 R (f) - ; Zl L (yhf(xl))
_— | | o | 1
® E [R7(f)] = R(f), Var [R?(f)] < 1, i.e. R¥() = R() + O (L)

est sef eneralization . .

e Derformance @ Just like testing error so far.
\_/-.

@ It becomes validation error only once it is used to change our learning.



Validation and Model Selection Validation and Cross-Validation

Validation
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Validation and Cross-Validation
Bias introduced by validation

@ Example: Selecting between two equally bad classifiers f; and f>:

R() = R(f:) = 0.5.

@ Assume that we have independent unbiased estimators Ry = R*3(f}),
Rz = R (f,), both uniform on [0, 1]

@ Learning rule £, chosen to minimize R is either f; or f>, so also equally
bad.

@ But Emin{R¢,Rs} = % so in terms of validation error it may appear that
we are getting an improvement!

Validation

@ For each combination of tuning parameters ~:

e Train our model on the training set, fit
parameters 6 = 0(~), obtaining decision Validation set MO?e"t
function fy (). comprexty
o Evaluate R (fy(,)) average loss on a —
validation set.
@ Pick ~* with best performance on validation Training set :
set.
@ Using ~*, train on both training and /
validation set to obtain the optimal 6*.
@ R (fo(y+) is now a biased estimate of Testsst |, generalization
R(fy(+)) and can be overly optimistic! performance
f

@ Evaluate model with v*, 6* on test set,
reporting generalization performance.

Validation and Cross-Validation
Validation error and Generalization

How contaminated are different parts of data in terms of being able to tell us
something about generalization ability?

@ Training data: fully contaminated, used in learning - R®™P(f) is usually far
from R(f) (unless the model is too simple for the amount of data).

@ Validation data: partly contaminated, used in model selection /
meta-learning - R'®(f) is biased, but still useful, provided that:

@ we have a large enough validation set size v
e we do not use it to select from a large number M of models

@ Test data: clean, not used for any part of learning.

Typically,
logM
V )

overfit penalty of the meta-model

R(f) <R?(f)+ O (



Validation and Cross-Validation
Size of validation set?

@ In practice, there is just one dataset! If v is
used for computing validation error, then

only n — v used for training. Validation set cModel
plexity
o Smallv: R (f")is abad estimate of R(f ") [ e
e Large v: R (f™) is a reliable estimate of a
much worse risk (f~ learned on much less
data than f)l Training set 0

@ We are using:

~ R(f~ ~ Rval (- —
(need small v) (f ) (need large v) (f )
Test set generalization

performance

—

@ Wasteful to split into 3 subsets.
@ Different approach: cross-validation.

Cross-Validation

@ Basic approach:

@ Split training set into T folds.
e Foreachyandeacht=1,...,T:
@ Use fold  as validation set and the rest to train the model parameters 6, = 6,(~),
obtaining decision function f; .

_ 1
RAGS) = e

Fod()] 2= 0w ()

ieFold(r)

@ Choose v* which minimizes validation error averaged over folds

T
1 _
LSRG
=1
o Train model with tuning parameter ~* on all training set to obtain f.,-.
o Report generalization performance on test set.
@ Leave-One-Out (LOO) cross validation: one data item per fold, i.e.,
T =n.

Cross-validation can be computationally expensive (T'x increase in
complexity).

Cross-Validation

Training Validation Test

Training Training

Training Validation Training Test

Training

Training Validation Training Training Test

Validation Training Training Test

Training

Validation and Cross-Validation
Leave-One-QOut Cross-Validation

Leave-one-out (LOO) cross validation: one data item per fold, i.e., T = n.

@ Since only one data item not used in training, R(f, ,) are all very close to
R(f,) (small v benefit).

@ Thus,

1 n n

LSRG = 3 Llufi (x)
=1 =1

has a small variance (large v benefit).
@ All examples for validation and all examples for training.
@ summands are no longer independent



