Statistical Data Mining and Machine Learning Hilary Term 2016

Dino Sejdinovic

Department of Statistics Oxford

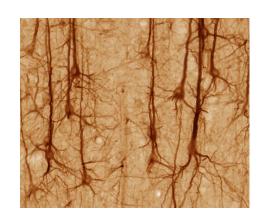
Slides and other materials available at:

http://www.stats.ox.ac.uk/~sejdinov/sdmml

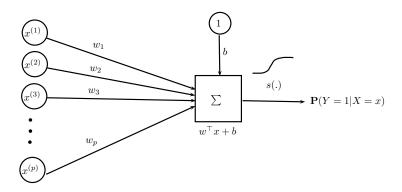
Neural Networks

Biological inspiration

- Basic computational elements: neurons.
- Receives signals from other neurons via dendrites.
- Sends processed signals via axons.
- Axon-dendrite interactions at synapses.
- $10^{10} 10^{11}$ neurons.
- $10^{14} 10^{15}$ synapses.

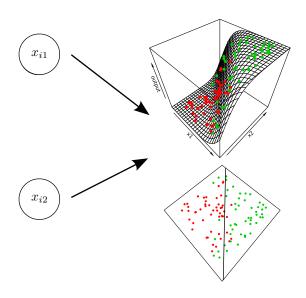


Single Neuron Classifier

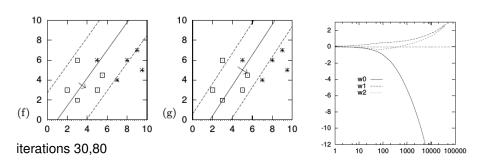


- activation $w^{T}x + b$ (linear in inputs x)
- activation/transfer function s gives the output/activity (potentially nonlinear in x)
- common nonlinear activation function $s(a) = \frac{1}{1+e^{-a}}$: **logistic regression**
- learn w and b via gradient descent

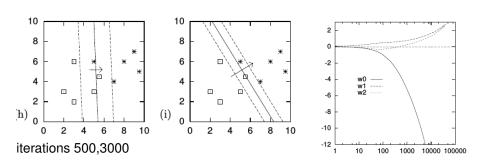
Single Neuron Classifier



Overfitting

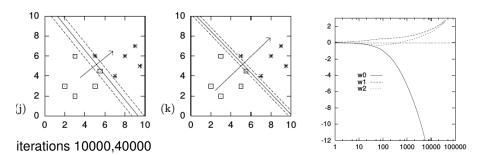


Overfitting



Overfitting

prevent overfitting by:



- early stopping: just halt the gradient descent
 - regularization: L₂-regularization called weight decay in neural networks literature.

Multilayer Networks

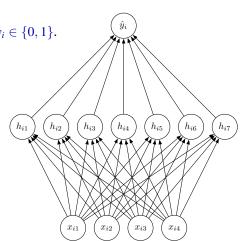
• Data vectors $x_i \in \mathbb{R}^p$, binary labels $y_i \in \{0, 1\}$.

- inputs x_{i1}, \ldots, x_{ip}
- output $\hat{y}_i = \mathbb{P}(Y = 1 | X = x_i)$
- hidden unit activities h_{i1}, \ldots, h_{im}
 - Compute hidden unit activities:

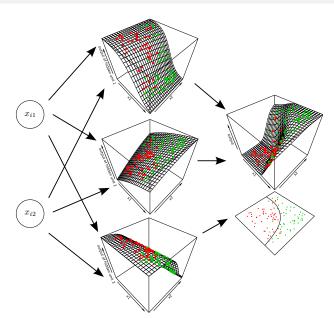
$$h_{il} = s \left(b_l^h + \sum_{j=1}^p w_{jl}^h x_{ij} \right)$$

Compute output probability:

$$\hat{y}_i = s \left(b^o + \sum_{l=1}^m w_k^o h_{il} \right)$$



Multilayer Networks



Training a Neural Network

• Objective function: L2-regularized log-loss

$$J = -\sum_{i=1}^{n} y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i) + \frac{\lambda}{2} \left(\sum_{jl} (w_{jl}^h)^2 + \sum_{l} (w_{l}^o)^2 \right)$$

where

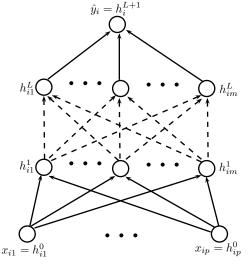
$$\hat{y}_i = s \left(b^o + \sum_{l=1}^m w_l^o h_{il} \right) \qquad h_{il} = s \left(b_l^h + \sum_{j=1}^p w_{jl}^h x_{ij} \right)$$

• Optimize parameters $\theta = \{b^h, w^h, b^o, w^o\}$, where $b^h \in \mathbb{R}^m$, $w^h \in \mathbb{R}^{p \times m}$, $b^o \in \mathbb{R}$, $w^o \in \mathbb{R}^m$ with gradient descent.

$$\begin{split} \frac{\partial J}{\partial w_l^o} &= \lambda w_l^o + \sum_{i=1}^n \frac{\partial J}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial w_l^o} = \lambda w_l^o + \sum_{i=1}^n (\hat{y}_i - y_i) h_{il}, \\ \frac{\partial J}{\partial w_{il}^h} &= \lambda w_{jl}^h + \sum_{i=1}^n \frac{\partial J}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial h_{il}} \frac{\partial h_{il}}{\partial w_{jl}^h} = \lambda w_{jl}^h + \sum_{i=1}^n (\hat{y}_i - y_i) w_l^o h_{il} (1 - h_{il}) x_{ij}. \end{split}$$

- L₂-regularization often called weight decay.
- Multiple hidden layers: Backpropagation algorithm

Multiple hidden layers



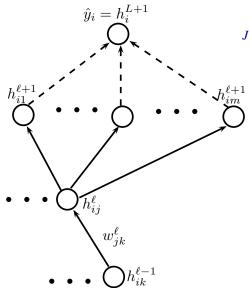
$$h_i^{\ell+1} = \underline{s} \left(W^{\ell+1} h_i^{\ell} \right)$$

- $W^{\ell+1} = \left(w_{jk}^{\ell}\right)_{jk}$: weight matrix at the $(\ell+1)$ -th layer, weight w_{jk}^{ℓ} on the edge between $h_{ik}^{\ell-1}$ and h_{ij}^{ℓ}
- <u>s</u>: entrywise (logistic) transfer function

$$\hat{y}_i = \underline{s} \left(W^{L+1} \underline{s} \left(W^L \left(\cdots \underline{s} \left(W^1 x_i \right) \right) \right) \right)$$

 Many hidden layers can be used: they are usually thought of as forming a hierarchy from low-level to high-level features.

Backpropagation



$$J = -\sum_{i=1}^{n} y_i \log h_i^{L+1} + (1 - y_i) \log(1 - h_i^{L+1})$$

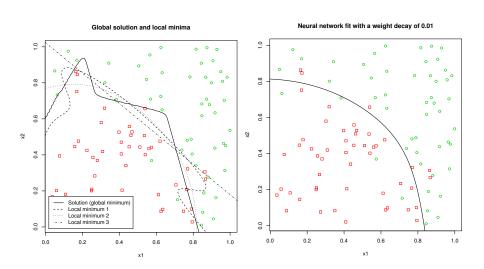
• Gradients wrt h_{ij}^{ℓ} computed by recursive applications of chain rule, and propagated through the network backwards.

$$\frac{\partial J}{\partial h_i^{L+1}} = -\frac{y_i}{h_i^{L+1}} + \frac{1 - y_i}{1 - h_i^{L+1}}$$

$$\frac{\partial J}{\partial h_{ij}^{\ell}} = \sum_{r=1}^{m} \frac{\partial J}{\partial h_{ir}^{\ell+1}} \frac{\partial h_{ir}^{\ell+1}}{\partial h_{ij}^{\ell}}$$

$$\frac{\partial J}{\partial w_{jk}^{\ell}} = \sum_{i=1}^{n} \frac{\partial J}{\partial h_{ij}^{\ell}} \frac{\partial h_{ij}^{\ell}}{\partial w_{jk}^{\ell}}$$

Neural Networks



R package implementing neural networks with a single hidden layer: nnet.

Neural Networks - Variations

• Other loss functions can be used, e.g. for regression:

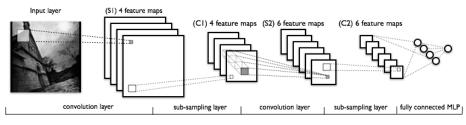
$$\sum_{i=1}^n |y_i - \hat{y}_i|^2$$

For multiclass classification, use **softmax** outputs:

$$\hat{y}_{ik} = \frac{\exp(b_k^o + \sum_{\ell} w_{ik}^o h_{i\ell})}{\sum_{k'} \exp(b_{k'}^o + \sum_{\ell} w_{ik'}^o h_{i\ell})} \qquad L(y_i, \hat{y}_i) = \sum_{k=1}^K \mathbb{1}(y_i = k) \log \hat{y}_{ik}$$

- Other activation functions can be used:
 - rectified linear unit (ReLU): $s(z) = \max(0, z)$
 - softplus: $s(z) = \log(1 + \exp(z))$
 - tanh: s(z) = tanh(z)

Deep Convolutional Neural Networks



- Input is a 2D image, $X \in \mathbb{R}^{p \times q}$.
- Convolution: detects simple object parts or features

$$A^{m} = s(X * W^{m})$$
 $A^{m}_{jk} = s \left(b^{m} + \sum_{fg} X_{j-f,k-g} W^{m}_{fg}\right)$

Weights W^m now correspond to a **filter** to be learned - typically much smaller than the input thus encouraging sparse connectivity.

 Pooling and Sub-sampling: replace the output with a summary statistic of the nearby outputs, e.g. max-pooling (allows invariance to small translations in the input).

$$B_{ik}^m = \max\{A_{fg}^m : |f - j| \le w, |g - k| \le h\}$$

LeCun et al, Krizhevsky et al.

Dropout Training of Neural Networks

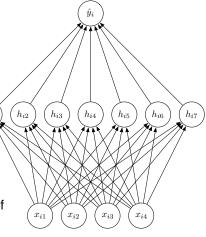
- Neural network with single layer of hidden units:
 - Hidden unit activations:

$$h_{ik} = s \left(b_k^h + \sum_{j=1}^p W_{jk}^h x_{ij} \right)$$

Output probability:

$$\hat{y}_i = s \left(b^o + \sum_{k=1}^m W_k^o h_{ik} \right)$$

- Large, overfitted networks often have co-adapted hidden units.
- What each hidden unit learns may in fact be useless, e.g. predicting the negation of predictions from other units.
- Can prevent co-adaptation by randomly dropping out units from network.



Hinton et al (2012).

Dropout Training of Neural Networks

• Model as an ensemble of networks:

$$p(y_i = 1 | x_i, \theta) = \sum_{\mathbf{b} \subset \{1, \dots, m\}} q^{|\mathbf{b}|} (1 - q)^{m - |\mathbf{b}|} p(y_i = 1 | x_i, \theta, \text{drop out units } \mathbf{b})$$

- Weight-sharing among all networks: each network uses a subset of the parameters of the full network (corresponding to the retained units).
- Training by stochastic gradient descent: at each iteration a network is sampled from ensemble, and its subset of parameters are updated.
- Biological inspiration: 10¹⁴ weights to be fitted in a lifetime of 10⁹ seconds
 - Poisson spikes as a regularization mechanism which prevents co-adaptation: Geoff Hinton on Brains, Sex and Machine Learning

Dropout Training of Neural Networks

Classification of phonemes in speech.

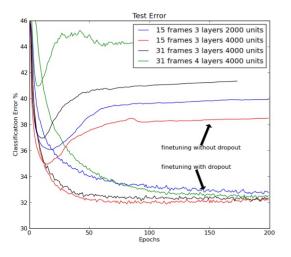


Figure from Hinton et al.

Neural Networks - Discussion

- Nonlinear hidden units introduce modelling flexibility.
- In contrast to user-introduced nonlinearities, features are global, and can be learned to maximize predictive performance.
- Neural networks with a single hidden layer and sufficiently many hidden units can model arbitrarily complex functions.
- Highly flexible framework, with many variations to solve different learning problems and introduce domain knowledge.
- Optimization problem is **not convex**, and objective function can have many local optima, plateaus and ridges.
- On large scale problems, often use stochastic gradient descent, along with a whole host of techniques for optimization, regularization, and initialization.
- Explosion of interest in the field recently and many new developments not covered here, especially by Geoffrey Hinton, Yann LeCun, Yoshua Bengio, Andrew Ng and others. See also

http://deeplearning.net/.