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Neural Networks Introduction

Biological inspiration

@ Basic computational elements:
neurons.

@ Receives signals from other
neurons via dendrites.

@ Sends processed signals via
axons.

@ Axon-dendrite interactions at
synapses.

@ 10'° —10'! neurons.
@ 10'* — 10" synapses.
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Single Neuron Classifier
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@ activation w'x + b (linear in inputs x)

@ activation/transfer function s gives the output/activity (potentially
nonlinear in x)
1

@ common nonlinear activation function s(a) = 1= logistic regression
@ learn w and b via gradient descent
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Single Neuron Classifier

Overfitting
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Figures from D. MacKay, Information Theory, Inference and Learning Algorithms
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Overfitting

iterations 30,80
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Overfitting

iterations 10000,40000

prevent overfitting by:
@ early stopping: just halt the gradient descent
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@ regularization: L,-regularization called weight decay in neural networks

literature.

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms
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Multilayer Networks Multilayer Networks
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@ Data vectors x; € R?, binary labels y; € {0, 1}. @

@ inputs x;;, ..., x;
o outputy, =P(Y = 1|X = x;)
@ hidden unit activities #;, ..., h;,
o Compute hidden unit activities:
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Training a Neural Network Multiple hidden layers
@ Objective function: L,-regularized log-loss gi = hi ™!
n \ Q hh = s (W)
J=- Z)’i log $; + (1 — ;) log(1 — 5:) + 5 Z(W]h/)z + Z(Wla)z
= g : . . . . . @ W= (wy) . weight matrix at
where m p "R ™~ -7 " the (04 1)—thjlayer, weight wf, on
yi=s (b” +)° W?hu> hi=s | b + > whx; ! ) ‘: < N ,\,‘1 ':/ . ! the edge between /' and h;
o = /= AN S ' @ s: entrywise (logistic) transfer
@ Optimize parameters § = {b", w" b°,w°}, where b" € R, wh € RP*™, ! NP AR NN function

b° € R, w® € R™ with gradient descent.
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o I,-regularization often called weight decay. @ Many hidden layers can be used: they are usually thought of as forming a

@ Multiple hidden layers: Backpropagation algorithm higrarchy from low-level to high-level features.

Ji=s (W s (Wh (-5 (W'n))))
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Neural Networks Backpropagation

Backpropagation
gi = hi ™
Zy, log b ™1+ (1—-y;) log(1—h; )
7 7 4 = ~
' 1 S N
, ’ 1 h
he+1 . ' AN Qe Gradients wrt h; computed by

recursive applications of chain
rule, and propagated through the
network backwards.
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Neural Networks — Variations
@ Other loss functions can be used, e.g. for regression:
Z lvi — 5’5\2
i=1
For multiclass classification, use softmax outputs:
K
. exp(bf + w9 hip
Yik = ( L Zﬁ £ ) yh)’z Z]l logylk

Zk/ eXp(bZ/ + ZZ W;)k’hif) =

@ Other activation functions can be used:
o rectified linear unit (ReLU): s(z) = max(0, z)
o softplus: s(z) = log(1 + exp(z))
o tanh: s5(z) = tanh(z)

Neural Networks

Global solution and local minima Neural network fit with a weight decay of 0.01
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R package implementing neural networks with a single hidden layer: nnet.

Deep Convolutional Neural Networks

Inpuc layer (51) 4 feature maps

Eﬂ {Cl) 4 feature maps (52) & feature maps (C2) 6 feature maps

convolution layer

| convolution layer | sub-sampling layer | | sub-sampling layer | fully connecred MLPl

@ Inputis a 2D image, X € R"*1.
@ Convolution: detects simple object parts or features

A" = s(X * W) Ajp=s | b"+ > X ru oWy
fg
Weights W™ now correspond to a filter to be learned - typically much smaller than
the input thus encouraging sparse connectivity.

@ Pooling and Sub-sampling: replace the output with a summary statistic of the
nearby outputs, e.g. max-pooling (allows invariance to small translations in the
input).

Bj = max{Aj, : [f —j| < w,[¢g —k| < h}

LeCun et al, Krizhevsky et al.



Dropout Training of Neural Networks

@ Neural network with single layer of hidden
units:

@ Hidden unit activations:

o Output probability:

$i=s (b” +> wgh,-k>
k=1

@ Large, overfitted networks often have
co-adapted hidden units.

@ What each hidden unit learns may in fact
be useless, e.g. predicting the negation of
predictions from other units.

@ Can prevent co-adaptation by randomly
dropping out units from network.
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Dropout Training of Neural Networks

Hinton et al (2012).

Classification of phonemes in speech.
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Figure from Hinton et al.

Neural Networks Dropout

Dropout Training of Neural Networks

@ Model as an ensemble of networks:

¢®l(1 — ¢)"~Plp(y; = 1]x;, 0, drop out units b)

@ Weight-sharing among all networks: each network uses a subset of the
parameters of the full network (corresponding to the retained units).

@ Training by stochastic gradient descent: at each iteration a network is
sampled from ensemble, and its subset of parameters are updated.
@ Biological inspiration: 10'* weights to be fitted in a lifetime of 10° seconds

o Poisson spikes as a regularization mechanism which prevents
co-adaptation: Geoff Hinton on Brains, Sex and Machine Learning

Neural Networks — Discussion

@ Nonlinear hidden units introduce modelling flexibility.

@ In contrast to user-introduced nonlinearities, features are global, and can
be learned to maximize predictive performance.

@ Neural networks with a single hidden layer and sufficiently many hidden
units can model arbitrarily complex functions.

@ Highly flexible framework, with many variations to solve different learning
problems and introduce domain knowledge.

@ Optimization problem is not convex, and objective function can have

many local optima, plateaus and ridges.

@ On large scale problems, often use stochastic gradient descent, along

with a whole host of techniques for optimization, regularization, and
initialization.

@ Explosion of interest in the field recently and many new developments

not covered here, especially by Geoffrey Hinton, Yann LeCun, Yoshua
Bengio, Andrew Ng and others. See also
http://deeplearning.net/.



