Statistical Data Mining and Machine Learning Hilary Term 2016

Dino Sejdinovic

Department of Statistics
Oxford

Slides and other materials available at:

http://www.stats.ox.ac.uk/~sejdinov/sdmml

Kernel Methods

Kernel trick in general

- In a learning algorithm, if only inner products $x_i^{\top} x_j$ are explicitly used, rather than data items x_i , x_j directly, we can replace them with a kernel function $k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$, where $\varphi(x)$ could be **nonlinear**, **high-and potentially infinite-dimensional** features of the original data.
 - Kernel ridge regression
 - Kernel logistic regression
 - Kernel PCA, CCA, ICA
 - Kernel K-means

Gram matrix

• The **Gram matrix** is the matrix of dot-products, $\mathbf{K}_{ij} = \varphi(x_i)^{\top} \varphi(x_j)$.

$$\mathbf{K} = \begin{pmatrix} -\varphi(x_1)^\top - \\ \vdots \\ -\varphi(x_i)^\top - \\ \vdots \\ -\varphi(x_n)^\top - \end{pmatrix} \cdot \begin{pmatrix} | & | & | \\ \varphi(x_1) & \cdots & \varphi(x_j) & \cdots & \varphi(x_n) \\ | & | & | & | \end{pmatrix}$$

- Since $\mathbf{K} = \Phi \Phi^{\top}$, it is symmetric and positive semidefinite.
- Recall: Gram matrix closely related to the distance matrix (MDS)
- Assuming features are centred, the sample covariance of features is $\Phi^\top \Phi.$
- Many kernel methods, e.g. kernel PCA, make use of the duality between the Gram and the sample covariance matrix.

Kernel: an inner product between feature maps

Definition (kernel)

Let \mathcal{X} be a non-empty set. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **kernel** if there exists a **Hilbert space**^a and a map $\varphi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$k(x, x') := \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}.$$

 a a vector space equipped with an inner product $\langle\cdot,\cdot\rangle$ which is also a complete metric space; can have infinitely many dimensions, e.g. the space ℓ^2 of all square-summable sequences or the space L^2 of all square-integrable functions

- Almost no conditions on \mathcal{X} (eg, \mathcal{X} itself need not have an inner product, e.g., documents).
- Think of kernel as a similarity measure between features

What are some simple kernels? E.g., for text documents? For images?

A single kernel can correspond to multiple sets of underlying features.

$$\varphi_1(x) = x$$
 and $\varphi_2(x) = \begin{pmatrix} x/\sqrt{2} & x/\sqrt{2} \end{pmatrix}^{\top}$

Positive semidefinite functions

If we are given a "measure of similarity" with two arguments, k(x, x'), how can we determine if it is a valid kernel?

- Find a feature map?
 - Sometimes not obvious (especially if the feature vector is infinite dimensional)
- A simpler direct property of the function: positive semidefiniteness.

Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive semidefinite if $\forall n \geq 1, \ \forall (a_1, \dots a_n) \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j \kappa(x_i, x_j) \ge 0.$$

• Kernel $k(x,y) := \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}}$ for a Hilbert space \mathcal{H} is positive semidefinite.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_i \varphi(x_i), a_j \varphi(x_j) \rangle_{\mathcal{H}}$$
$$= \left\| \sum_{i=1}^{n} a_i \varphi(x_i) \right\|_{\mathcal{H}}^2 \ge 0.$$

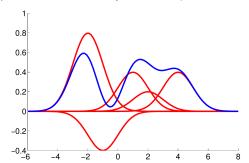
Positive semidefinite functions are kernels

Moore-Aronszajn Theorem

Every positive semidefinite function is a kernel for some Hilbert space \mathcal{H} .

 H is usually thought of as a space of functions (Reproducing kernel Hilbert space - RKHS)

Gaussian RBF kernel $k(x,x') = \exp\left(-\frac{1}{2\gamma^2}\|x-x'\|^2\right)$ has an infinite-dimensional \mathcal{H} with elements $h(x) = \sum_{i=1}^m a_i k(x_i,x)$ (recall that $w^\top \varphi(x)$ in SVM has exactly this form!).



Reproducing kernel

Definition (Reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$ defined on a non-empty set \mathcal{X} . A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called **a reproducing kernel** of \mathcal{H} if it satisfies

- $\forall x \in \mathcal{X}, k_x = k(\cdot, x) \in \mathcal{H},$
- $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

In particular, for any
$$x, y \in \mathcal{X}$$
, $k(x, y) = \langle k(\cdot, y), k(\cdot, x) \rangle_{\mathcal{H}} = \langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}}$.

Can forget all about $\varphi(x)$ and just treat $k(\cdot, x)$ as a feature of x (it is a perfectly valid Hilbert-space valued feature)!

RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space $\mathcal H$ of functions $f:\mathcal X\to\mathbb R$, defined on a non-empty set $\mathcal X$ is said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation functionals $\delta_x:\mathcal H\to\mathbb R$, $\delta_x f=f(x)$ are continuous $\forall x\in\mathcal X$.

Theorem (Norm convergence implies pointwise convergence)

If
$$\lim_{n\to\infty} \|f_n - f\|_{\mathcal{H}} = 0$$
, then $\lim_{n\to\infty} f_n(x) = f(x)$, $\forall x \in \mathcal{X}$.

- If two functions $f,g\in\mathcal{H}$ are close in the norm of \mathcal{H} , then f(x) and g(x) are close for all $x\in\mathcal{X}$
- This is a property of particularly "nice" functional spaces. For example, does not hold on spaces endowed with L_2 norm: x^n on [0,1] converges to 0 in L_2 but not pointwise.

Back to SVMs

Maximum margin classifier in RKHS: Looking for a decision function of form sign(w(x)) where $w \in \mathcal{H}_k$. Because we are in an RKHS, $w(x) = \langle w, k(\cdot, x) \rangle_{\mathcal{H}_k}$.

$$\min_{w \in \mathcal{H}_k} \left(\frac{1}{2} \|w\|_{\mathcal{H}_k}^2 + C \sum_{i=1}^n h\left(y_i \left\langle w, k(\cdot, x_i) \right\rangle_{\mathcal{H}_k} \right) \right)$$

for the RKHS $\mathcal H$ with kernel k(x,x'). Maximizing the margin equivalent to minimizing $\|w\|_{\mathcal H}^2$: for many RKHSs a smoothness constraint on function w. Why can we solve this infinite-dimensional optimization problem? Because we know that $w \in \operatorname{span} \{k(\cdot,x_i): i=1,\dots,n\}$ – Representer Theorem.

Representer theorem

Standard supervised learning setup: we are given a set of paired observations $(x_1, y_1), \dots (x_n, y_n)$.

Goal: find the function f^* in the RKHS \mathcal{H} which solves the regularized empirical risk minimization problem.

$$\min_{f \in \mathcal{H}} \hat{R}(f) + \Omega\left(\left\|f\right\|_{\mathcal{H}}^{2}\right),\,$$

where empirical risk is

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i), x_i),$$

and Ω is a non-decreasing function.

- Classification: L could be a hinge loss $L(y, f(x), x) = (1 yf(x))_+$ or a logistic loss $L(y, f(x), x) = \log(1 + \exp(-yf(x))$.
- Regression: $L(y, f(x), x) = (y f(x))^2$.

Representer theorem

Theorem (Representer Theorem)

There is a solution to

$$\min_{f \in \mathcal{H}} \hat{R}(f) + \Omega\left(\|f\|_{\mathcal{H}}^{2}\right)$$

that takes the form

$$f^* = \sum_{i=1}^n \alpha_i k(\cdot, x_i).$$

If Ω is strictly increasing, all solutions have this form.

Representer theorem: proof

Proof: Denote f_s projection of f onto the subspace

$$\mathrm{span}\,\{k(\cdot,x_i):\,i=1,\ldots,n\}$$

such that

$$f = f_s + f_\perp,$$

where $f_s = \sum_{i=1}^n \alpha_i k(\cdot, x_i)$ and f_{\perp} is orthogonal to span $\{k(\cdot, x_i) : i = 1, \dots, n\}$.

Regularizer:

$$||f||_{\mathcal{H}}^2 = ||f_s||_{\mathcal{H}}^2 + ||f_{\perp}||_{\mathcal{H}}^2 \ge ||f_s||_{\mathcal{H}}^2$$

then

$$\Omega\left(\left\|f\right\|_{\mathcal{H}}^{2}\right) \geq \Omega\left(\left\|f_{s}\right\|_{\mathcal{H}}^{2}\right).$$

Representer theorem: proof

Proof (cont.): Individual terms $f(x_i)$ in the loss:

$$f(x_i) = \langle f, k(\cdot, x_i) \rangle_{\mathcal{H}} = \langle f_s + f_{\perp}, k(\cdot, x_i) \rangle_{\mathcal{H}} = \langle f_s, k(\cdot, x_i) \rangle_{\mathcal{H}},$$

SO

$$L(y_i, f(x_i), x_i) = L(y_i, f_s(x_i), x_i) \forall i \implies \hat{R}(f) = \hat{R}(f_s).$$

Hence

- The empirical risk only depends on the components of f lying in the subspace spanned by canonical features.
- Regularizer $\Omega(...)$ is minimized when $f = f_s$.
- If Ω is strictly non-decreasing, then $\|f_{\perp}\|_{\mathcal{H}}=0$ is required at the minimum.

Kernel Methods – Discussion

learning models.

• Nonparametric method: parameter space (e.g., normal vector w in SVM)

The framework of kernel methods allows building flexible machine

- can be infinite-dimensional
- Kernels can be defined over more complex structures than vectors, e.g. graphs, strings, images, bags of instances, probability distributions.
- In naïve implementation, computational cost is at least quadratic in the number of observations, often $O(n^3)$ computation and $O(n^2)$ memory, but there are various approximations with good scaling up properties.
- Further reading:
 - Bishop, Pattern Recognition and Machine Learning, Chapter 6.
 - Schölkopf and Smola, Learning with Kernels, 2001.
 - Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.

Smoothing and Nearest Neighbours

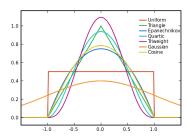
Nonlinear Methods

- Nonlinearity by data transformation: $x \mapsto \varphi(x)$ (explicit or implicit).
- A global approach. Decision function and optimal parameters can depend on training examples in the whole domain X.
- Alternative approach: decision function f(x) depends only on instances in the **local neighbourhood** of x.

Smoothing kernels

- Recall the plug-in generative classifier $f(x) = \operatorname{argmax}_{l \in \{1, \dots, K\}} \hat{\pi}_l \hat{g}_l(x)$
- What if we do not want to assume that the true class-l conditional density $g_l(x)$ takes any particular form (i.e., multivariate normal)?
- Use a kernel density estimate

$$\hat{g}_l(x) = \frac{1}{n_l} \sum_{i: y_i = l} \kappa(x - x_i)$$



smoothing (Parzen) kernel ≠ positive-semidefinite (Mercer) kernel

Smoothing kernels

Kernel density estimate

$$\hat{g}_l(x) = \frac{1}{n_l} \sum_{i: y_i = l} \kappa(x - x_i)$$

• since $\hat{\pi}_l = \frac{n_l}{n}$, discrimination based on total similarity of x to instances in each of the classes:

$$f(x) = \underset{l \in \{1, \dots, K\}}{\operatorname{argmax}} \sum_{i: y_i = l} \kappa(x - x_i)$$

Posterior class probabilities

$$\hat{\mathbb{P}}(Y = l | X = x) = \frac{\hat{\pi}_l \hat{g}_l(x)}{\sum_{j=1}^K \hat{\pi}_j \hat{g}_j(x)} = \frac{\sum_{i: y_i = l} \kappa(x - x_i)}{\sum_{j=1}^n \kappa(x - x_j)}$$

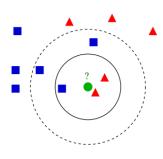
k-Nearest Neighbours

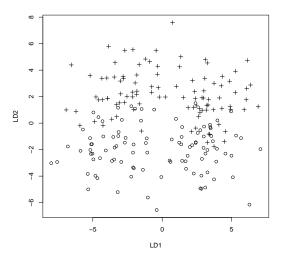
- Prediction at a data vector x is determined by the set ne_k(x) of k nearest neighbours of x among the training set.
- Classification: majority vote of the neighbours:

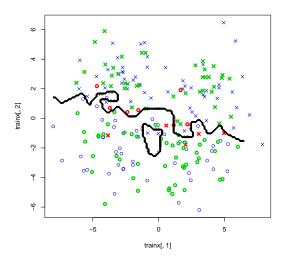
$$f_{\mathsf{kNN}}(x) = \mathop{\mathrm{argmax}}_l \ |\{j \in ne_{\mathsf{k}}(x) : y_j = l\}|.$$

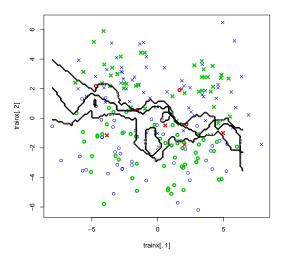
 Regression: average among the neighbours:

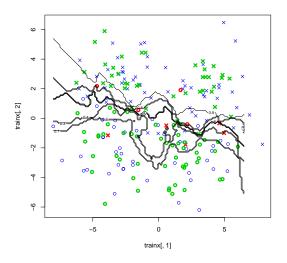
$$f_{\mathsf{kNN}}(x) = \frac{\sum_{j \in ne_{\mathsf{k}}(x)} y_j}{\mathsf{k}}.$$



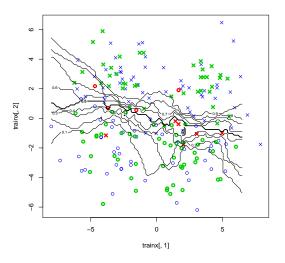




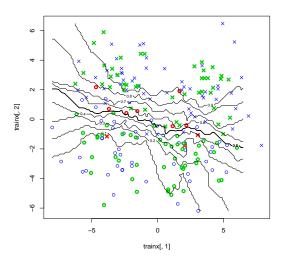




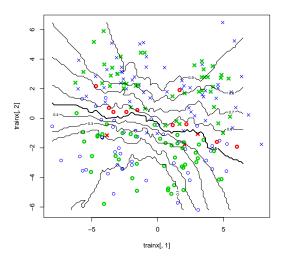
Result of 5NN

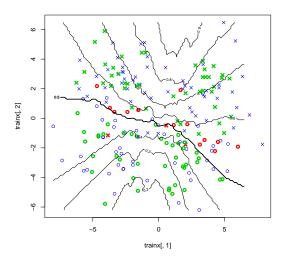


Result of 11NN



Result of 21NN





Result of 51NN

k-Nearest Neighbour Demo – R Code I

```
library (MASS)
## load crabs data
data(crabs)
ct <- as.numeric(crabs[.11)-1+2*(as.numeric(crabs[.21)-1)
## project to first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- as.matrix(cb.ldp$x[,1:2])
v <- as.numeric(crabs[,21)-1
x < -x + rnorm(dim(x)[1]*dim(x)[2])*1.5
eqscplot (x, pch=2*y+1, col=1)
       <- length(y)
#get training indices
i <- sample(rep(c(TRUE,FALSE),each=n/2),n,replace=FALSE)
kNN <- function(k,x,y,i,gridsize=100) {
         <- \dim(x)[2]
  train <- (1:n)[i]
 test <- (1:n)[!i]
 trainx <- x[train,]
 trainy <- v[train]
 testx <- x[test,]
 testy <- v[test]
  trainn <- dim(trainx)[1]
  testn <- dim(testx)[1]
 gridx1 \leftarrow seg(min(x[,1]), max(x[,2]), length=gridsize)
 gridx2 \leftarrow seg(min(x[,2]), max(x[,2]), length=gridsize)
 gridx <- as.matrix(expand.grid(gridx1,gridx2))</pre>
 gridn <- dim(gridx)[1]
```

k-Nearest Neighbour Demo – R Code II

```
# calculate distances
trainxx <- t((trainx*trainx) %*% matrix(1,p,1))
testxx <- (testx*testx) %*% matrix(1,p,1)
gridxx <- (gridx*gridx) %*% matrix(1,p,1)
testtraindist <- matrix(1.testn.1) %*% trainxx +
  testxx %*% matrix(1,1,trainn) -
  2*(testx %*% t(trainx))
gridtraindist <- matrix(1,gridn,1) %*% trainxx +
  gridxx %*% matrix(1,1,trainn) -
  2*(gridx %*% t(trainx))
# predict
testp <- numeric(testn)
gridp <- numeric(gridn)
for (i in 1:testn) {
  nearestneighbors <- order(testtraindist[j,])[1:k]
  testp[j] <- mean(trainy[nearestneighbors])
for (i in 1:gridn) {
  nearestneighbors <- order(gridtraindist[j,])[1:k]
  gridp[i] <- mean(trainv[nearestneighbors])
predy <- as.numeric(testp>.5)
plot(trainx[,1],trainx[,2],pch=trainy*3+1,col=4,1wd=.5)
points(testx[,1],testx[,2],pch=testy*3+1,col=2+(predy==testy),lwd=3)
contour (gridx1, gridx2, matrix (gridp, gridsize, gridsize),
        levels=seg(.1,.9,.1), lwd=.5, add=TRUE)
contour (gridx1, gridx2, matrix (gridp, gridsize, gridsize),
        levels=c(.5), lwd=2, add=TRUE)
```

Asymptotic Performance of 1NN

- Let $(x_i, y_i)_{i=1}^n$ be training data where $x_i \in \mathbb{R}^p$ and $y_i \in \{1, 2, ..., K\}$.
- We define

$$f_{\mathsf{Bayes}}\left(x
ight) \ := \ \underset{l \in \{1, \dots, K\}}{\mathrm{arg}} \max_{l \in \{1, \dots, K\}} \pi_{l} g_{l}\left(x
ight),$$
 $f_{\mathsf{1NN}}^{(n)}\left(x
ight) \ := \ y_{j}, \mathsf{s.t.} \ x_{j} \ \mathsf{is} \ \mathsf{the} \ \mathsf{nearest} \ \mathsf{neigbour} \ \mathsf{of} \ x.$

The (optimal) Bayes risk and 1NN risk are:

$$\begin{array}{lcl} R_{\mathsf{Bayes}} & = & \mathbb{E}\left[\mathbf{1}\left(Y \neq f_{\mathsf{Bayes}}\left(X\right)\right)\right] \\ R_{\mathsf{1NN}}^{(n)} & = & \mathbb{E}\left[\mathbf{1}\left(Y \neq f_{\mathsf{1NN}}^{(n)}\left(X\right)\right)\right] \end{array}$$

• As $n \to \infty$, $R_{1\text{NN}}^{(n)} \to R_{1\text{NN}}$, where

$$R_{\mathsf{Bayes}} \leq R_{\mathsf{1NN}} \leq 2R_{\mathsf{Bayes}} - rac{K}{K-1}R_{\mathsf{Bayes}}^2.$$

k-Nearest Neighbours - Discussion

- Simple and essentially model-free, i.e., weaker assumptions than LDA,
 Naïve Bayes and logistic regression.
- Not useful for understanding relationships between attributes and class predictions.
- Sensitive to the choice of distance and to the choice of the number of neighbours k
- High computational cost:
 - Need to store all training data.
 - Need to compare each test data vector to all training data.
 - Need a lot of data in high dimensions.
- Mitigation: compute approximate nearest neighbours, using kd-trees, cover trees, random forests.