
Statistical Data Mining and Machine Learning
Hilary Term 2016

Dino Sejdinovic
Department of Statistics

Oxford

Slides and other materials available at:
http://www.stats.ox.ac.uk/~sejdinov/sdmml

Kernel Methods Kernels and their Feature Spaces

Kernel Methods

Kernel Methods Kernels and their Feature Spaces

Kernel trick in general

In a learning algorithm, if only inner products x>i xj are explicitly used,
rather than data items xi, xj directly, we can replace them with a kernel
function k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉, where ϕ(x) could be nonlinear, high-
and potentially infinite-dimensional features of the original data.

Kernel ridge regression
Kernel logistic regression
Kernel PCA, CCA, ICA
Kernel K-means

Kernel Methods Kernels and their Feature Spaces

Gram matrix

The Gram matrix is the matrix of dot-products, Kij = ϕ(xi)
>ϕ(xj).

K =




−− ϕ(x1)> −−
...

−− ϕ(xi)
> −−

...
−− ϕ(xn)> −−



·



| | |

ϕ(x1) · · · ϕ(xj) · · · ϕ(xn)
| | |




Since K = ΦΦ>, it is symmetric and positive semidefinite.
Recall: Gram matrix closely related to the distance matrix (MDS)
Assuming features are centred, the sample covariance of features is
Φ>Φ.
Many kernel methods, e.g. kernel PCA, make use of the duality between
the Gram and the sample covariance matrix.

Kernel Methods Kernels and their Feature Spaces

Kernel: an inner product between feature maps

Definition (kernel)

Let X be a non-empty set. A function k : X × X → R is a kernel if there
exists a Hilbert spacea and a map ϕ : X → H such that ∀x, x′ ∈ X ,

k(x, x′) := 〈ϕ(x), ϕ(x′)〉H .

aa vector space equipped with an inner product 〈·, ·〉 which is also a complete metric
space; can have infinitely many dimensions, e.g. the space `2 of all square-summable
sequences or the space L2 of all square-integrable functions

Almost no conditions on X (eg, X itself need not have an inner product,
e.g., documents).
Think of kernel as a similarity measure between features

What are some simple kernels? E.g., for text documents? For images?
A single kernel can correspond to multiple sets of underlying features.

ϕ1(x) = x and ϕ2(x) =
(

x/
√

2 x/
√

2
)>

Kernel Methods Kernels and their Feature Spaces

Positive semidefinite functions

If we are given a “measure of similarity” with two arguments, k(x, x′), how can
we determine if it is a valid kernel?

1 Find a feature map?
Sometimes not obvious (especially if the feature vector is infinite
dimensional)

2 A simpler direct property of the function: positive semidefiniteness.

Kernel Methods Kernels and their Feature Spaces

Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function κ : X × X → R is positive semidefinite if
∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑

i=1

n∑

j=1

aiajκ(xi, xj) ≥ 0.

Kernel k(x, y) := 〈ϕ(x), ϕ(y)〉H for a Hilbert space H is positive
semidefinite.

n∑

i=1

n∑

j=1

aiajk(xi, xj) =
n∑

i=1

n∑

j=1

〈aiϕ(xi), ajϕ(xj)〉H

=

∥∥∥∥∥
n∑

i=1

aiϕ(xi)

∥∥∥∥∥

2

H
≥ 0.

Kernel Methods Kernels and their Feature Spaces

Positive semidefinite functions are kernels

Moore-Aronszajn Theorem

Every positive semidefinite function is a kernel for some Hilbert space H.

H is usually thought of as a space of functions
(Reproducing kernel Hilbert space - RKHS)

Gaussian RBF kernel k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

has an infinite-

dimensional H with elements h(x) =
∑m

i=1 aik(xi, x)
(recall that w>ϕ(x) in SVM has exactly this form!).

Kernel Methods Kernels and their Feature Spaces

Reproducing kernel

Definition (Reproducing kernel)

Let H be a Hilbert space of functions f : X → R defined on a non-empty set
X . A function k : X ×X → R is called a reproducing kernel of H if it satisfies
∀x ∈ X , kx = k(·, x) ∈ H,
∀x ∈ X , ∀f ∈ H, 〈f , k(·, x)〉H = f (x) (the reproducing property).

In particular, for any x, y ∈ X , k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.

Can forget all about ϕ(x) and just treat k(·, x) as a feature of x (it is a perfectly
valid Hilbert-space valued feature)!

Kernel Methods Kernels and their Feature Spaces

RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space H of functions f : X → R, defined on a non-empty set X is
said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation
functionals δx : H → R, δxf = f (x) are continuous ∀x ∈ X .

Theorem (Norm convergence implies pointwise convergence)

If limn→∞ ‖fn − f‖H = 0, then limn→∞ fn(x) = f (x), ∀x ∈ X .

If two functions f , g ∈ H are close in the norm of H, then f (x) and g(x) are
close for all x ∈ X
This is a property of particularly “nice” functional spaces. For example,
does not hold on spaces endowed with L2 norm: xn on [0, 1] converges to
0 in L2 but not pointwise.

Kernel Methods Kernels and their Feature Spaces

Back to SVMs

Maximum margin classifier in RKHS: Looking for a decision function of form
sign(w(x)) where w ∈ Hk. Because we are in an RKHS, w(x) = 〈w, k(·, x)〉Hk .

min
w∈Hk

(
1
2
‖w‖2

Hk
+ C

n∑

i=1

h
(
yi 〈w, k(·, xi)〉Hk

)
)

for the RKHSH with kernel k(x, x′). Maximizing the margin equivalent to
minimizing ‖w‖2

H: for many RKHSs a smoothness constraint on function w.
Why can we solve this infinite-dimensional optimization problem? Because we
know that w ∈ span {k(·, xi) : i = 1, . . . , n} – Representer Theorem.

Kernel Methods Representer Theorem

Representer theorem

Standard supervised learning setup: we are given a set of paired
observations (x1, y1), . . . (xn, yn).
Goal: find the function f ∗ in the RKHS H which solves the regularized
empirical risk minimization problem.

min
f∈H

R̂(f) + Ω
(
‖f‖2
H

)
,

where empirical risk is

R̂(f) =
1
n

n∑

i=1

L(yi, f (xi), xi),

and Ω is a non-decreasing function.
Classification: L could be a hinge loss L(y, f (x), x) = (1− yf (x))+ or a
logistic loss L(y, f (x), x) = log (1 + exp(−yf (x)).
Regression: L(y, f (x), x) = (y− f (x))2.

Kernel Methods Representer Theorem

Representer theorem

Theorem (Representer Theorem)

There is a solution to
min
f∈H

R̂(f) + Ω
(
‖f‖2
H

)

that takes the form

f ∗ =

n∑

i=1

αik(·, xi).

If Ω is strictly increasing, all solutions have this form.

Kernel Methods Representer Theorem

Representer theorem: proof

Proof: Denote fs projection of f onto the subspace

span {k(·, xi) : i = 1, . . . , n}

such that
f = fs + f⊥,

where fs =
∑n

i=1 αik(·, xi) and f⊥ is orthogonal to span {k(·, xi) : i = 1, . . . , n}.
Regularizer:

‖f‖2
H = ‖fs‖2

H + ‖f⊥‖2
H ≥ ‖fs‖

2
H ,

then
Ω
(
‖f‖2
H

)
≥ Ω

(
‖fs‖2

H

)
.

Kernel Methods Representer Theorem

Representer theorem: proof

Proof (cont.): Individual terms f (xi) in the loss:

f (xi) = 〈f , k(·, xi)〉H = 〈fs + f⊥, k(·, xi)〉H = 〈fs, k(·, xi)〉H ,

so
L(yi, f (xi), xi) = L(yi, fs(xi), xi)∀i =⇒ R̂(f) = R̂(fs).

Hence
The empirical risk only depends on the components of f lying in the
subspace spanned by canonical features.
Regularizer Ω(. . .) is minimized when f = fs.
If Ω is strictly non-decreasing, then ‖f⊥‖H = 0 is required at the minimum.

Kernel Methods Discussion

Kernel Methods – Discussion

The framework of kernel methods allows building flexible machine
learning models.
Nonparametric method: parameter space (e.g., normal vector w in SVM)
can be infinite-dimensional
Kernels can be defined over more complex structures than vectors, e.g.
graphs, strings, images, bags of instances, probability distributions.
In naïve implementation, computational cost is at least quadratic in the
number of observations, often O(n3) computation and O(n2) memory, but
there are various approximations with good scaling up properties.
Further reading:

Bishop, Pattern Recognition and Machine Learning, Chapter 6.
Schölkopf and Smola, Learning with Kernels, 2001.
Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.

Smoothing and Nearest Neighbours

Smoothing and Nearest Neighbours

Smoothing and Nearest Neighbours Smoothing Kernels

Nonlinear Methods

Nonlinearity by data transformation: x 7→ ϕ(x) (explicit or implicit).
A global approach. Decision function and optimal parameters can
depend on training examples in the whole domain X .
Alternative approach: decision function f (x) depends only on instances in
the local neighbourhood of x.

Smoothing and Nearest Neighbours Smoothing Kernels

Smoothing kernels

Recall the plug-in generative classifier f (x) = argmaxl∈{1,...,K} π̂lĝl(x)
What if we do not want to assume that the true class-l conditional density
gl(x) takes any particular form (i.e., multivariate normal)?
Use a kernel density estimate

ĝl(x) =
1
nl

∑

i: yi=l

κ(x− xi)

smoothing (Parzen) kernel︸ ︷︷ ︸
local similarity

6= positive-semidefinite (Mercer) kernel︸ ︷︷ ︸
inner product between features

Smoothing and Nearest Neighbours Smoothing Kernels

Smoothing kernels

Kernel density estimate

ĝl(x) =
1
nl

∑

i: yi=l

κ(x− xi)

since π̂l = nl
n , discrimination based on total similarity of x to instances in

each of the classes:

f (x) = argmax
l∈{1,...,K}

∑

i: yi=l

κ(x− xi)

Posterior class probabilities

P̂ (Y = l|X = x) =
π̂lĝl(x)∑K
j=1 π̂jĝj(x)

=

∑
i: yi=l κ(x− xi)∑n

j=1 κ(x− xj)

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbours

Prediction at a data vector x is determined
by the set nek(x) of k nearest neighbours
of x among the training set.
Classification: majority vote of the
neighbours:

fkNN(x) = argmax
l

|{j ∈ nek(x) : yj = l}|.

Regression: average among the
neighbours:

fkNN(x) =

∑
j∈nek(x) yj

k
.

figure by A. Ajanki

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

8

LD1

LD
2

Data
Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

trainx[, 1]

tr
ai

nx
[,

2]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

 0.1

 0.1

 0.2

 0.2

 0.3

 0
.3

 0.4

 0.4

 0.5

 0
.5

 0.6

 0.7

 0
.8

 0.9

 0.5

 0.5

Result of 1NN

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

trainx[, 1]

tr
ai

nx
[,

2]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

 0.1

 0
.1

 0.2

 0.3

 0.4

 0.4

 0.4

 0.5

 0.5

 0
.5

 0.6

 0
.6

 0.7

 0.8

 0.9

 0.5

 0.5

 0.5

Result of 3NN

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

trainx[, 1]

tr
ai

nx
[,

2]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
 0.1

 0.2
 0.3

 0.4 0.5

 0.6 0.7

 0.8
 0.9

 0.5

Result of 5NN

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

trainx[, 1]

tr
ai

nx
[,

2]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
 0.1

 0.2

 0.3 0.4

 0.5

 0
.5

 0.6

 0.7 0.8 0.9

 0.5

 0
.5

Result of 11NN
Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

trainx[, 1]

tr
ai

nx
[,

2]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5

Result of 21NN

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

trainx[, 1]

tr
ai

nx
[,

2]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

 0
.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5

Result of 31NN

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

trainx[, 1]

tr
ai

nx
[,

2]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0
.9

 0.5

Result of 51NN

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo – R Code I

library(MASS)
load crabs data
data(crabs)
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)
project to first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- as.matrix(cb.ldp$x[,1:2])
y <- as.numeric(crabs[,2])-1
x <- x + rnorm(dim(x)[1]*dim(x)[2])*1.5
eqscplot(x,pch=2*y+1,col=1)
n <- length(y)

#get training indices
i <- sample(rep(c(TRUE,FALSE),each=n/2),n,replace=FALSE)

kNN <- function(k,x,y,i,gridsize=100) {

p <- dim(x)[2]

train <- (1:n)[i]
test <- (1:n)[!i]
trainx <- x[train,]
trainy <- y[train]
testx <- x[test,]
testy <- y[test]

trainn <- dim(trainx)[1]
testn <- dim(testx)[1]

gridx1 <- seq(min(x[,1]),max(x[,2]),length=gridsize)
gridx2 <- seq(min(x[,2]),max(x[,2]),length=gridsize)
gridx <- as.matrix(expand.grid(gridx1,gridx2))
gridn <- dim(gridx)[1]

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbour Demo – R Code II

calculate distances
trainxx <- t((trainx*trainx) %*% matrix(1,p,1))
testxx <- (testx*testx) %*% matrix(1,p,1)
gridxx <- (gridx*gridx) %*% matrix(1,p,1)
testtraindist <- matrix(1,testn,1) %*% trainxx +

testxx %*% matrix(1,1,trainn) -
2*(testx %*% t(trainx))

gridtraindist <- matrix(1,gridn,1) %*% trainxx +
gridxx %*% matrix(1,1,trainn) -
2*(gridx %*% t(trainx))

predict
testp <- numeric(testn)
gridp <- numeric(gridn)
for (j in 1:testn) {

nearestneighbors <- order(testtraindist[j,])[1:k]
testp[j] <- mean(trainy[nearestneighbors])

}
for (j in 1:gridn) {

nearestneighbors <- order(gridtraindist[j,])[1:k]
gridp[j] <- mean(trainy[nearestneighbors])

}
predy <- as.numeric(testp>.5)

plot(trainx[,1],trainx[,2],pch=trainy*3+1,col=4,lwd=.5)
points(testx[,1],testx[,2],pch=testy*3+1,col=2+(predy==testy),lwd=3)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),

levels=seq(.1,.9,.1),lwd=.5,add=TRUE)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),

levels=c(.5),lwd=2,add=TRUE)
}

Smoothing and Nearest Neighbours Nearest Neighbour Methods

Asymptotic Performance of 1NN

Let (xi, yi)
n
i=1 be training data where xi ∈ Rp and yi ∈ {1, 2, ...,K}.

We define

fBayes (x) := arg max
l∈{1,...,K}

πlgl (x) ,

f (n)
1NN (x) := yj, s.t. xj is the nearest neigbour of x.

The (optimal) Bayes risk and 1NN risk are:

RBayes = E [1 (Y 6= fBayes (X))]

R(n)
1NN = E

[
1
(

Y 6= f (n)
1NN (X)

)]

As n→∞, R(n)
1NN → R1NN, where

RBayes ≤ R1NN ≤ 2RBayes −
K

K − 1
R2

Bayes.

Smoothing and Nearest Neighbours Nearest Neighbour Methods

k-Nearest Neighbours – Discussion

Simple and essentially model-free, i.e., weaker assumptions than LDA,
Naïve Bayes and logistic regression.
Not useful for understanding relationships between attributes and class
predictions.
Sensitive to the choice of distance and to the choice of the number of
neighbours k
High computational cost:

Need to store all training data.
Need to compare each test data vector to all training data.
Need a lot of data in high dimensions.

Mitigation: compute approximate nearest neighbours, using kd-trees,
cover trees, random forests.

