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Generative vs Discriminative Learning

@ Generative learning: find parameters which explain all the data
available.

n
6= argmaxz log p(x;, yi|0)
o o
Examples: LDA, naive Bayes.
o Makes use of all the data available.

e Flexible framework, can incorporate other tasks, incomplete data.
e Stronger modelling assumptions.

@ Discriminative learning: find parameters that aid in prediction.

R 1 n R n
¢ = argmin > Liyifolxi)) or 6= argmax logp(yilx;,6)
o i=1 =
Examples: logistic regression, support vector machines.

o Typically performs better on a given task.
o Weaker modelling assumptions.
@ Can overfit more easily.



Generative Learning

@ We work with a joint distribution px y(x, y) over data vectors and labels.
@ A learning algorithm: construct f : X — ) which predicts the label of X.
@ Given a loss function L, the risk R of f(X) is

R(f) = Epy ,[L(Y,f(X))]

@ For 0/1 loss in classification, Bayes classifier

fBayes(x) = argmaxp(Y k|x) = argmax px y(x, k)
k=1,....K k=1,....K

has the minimum risk (Bayes risk), but is unknown since py y is unknown.
@ Assume a parameteric model for the joint: px y(x,y) = px y(x,y|0)
@ Fit § = argmax, > logp(xi, y:|6) and plug in back to Bayes classifier:

f(x) = argmax py y(x, k|0)
k=1,...K



Hypothesis space and Empirical Risk Minimization

@ Find best function in % minimizing the risk:

fio = argminEy y[L(Y,f(X))]
feH

@ Empirical Risk Minimization (ERM): minimize the empirical risk instead,
since we typically do not know Py y.

Jf = argmin % ZL(Yuf(xi))

fern o

@ Hypothesis space H is the space of functions f under consideration.
@ How complex should we allow functions f to be? If hypothesis space # is
“too large”, ERM will overfit. Function

]AC(.X) _ {yl if x = Xi,

0 otherwise

will have zero empirical risk, but is useless for generalization, since it has
simply “memorized” the dataset.



Training and Test Performance

i L yl) Xi

For 0-1 loss in classification, this is the misclassification error on the
training data {x;,y;}%_,, which were used in learning f.
@ Test error is the empirical risk on new, previously unseen observations
{-iiayi};nzl
|
P ZI: Ly f (X))
which were NOT used in learning f.

@ Test error is a much better gauge of how well learned function
generalizes to new data.

@ The test error is in general larger than the training error.



Hypothesis space for two-class LDA

@ Assume we have two classes {+1, —1}.

@ Recall that the discriminant functions in LDA are linear. Assuming that
data vectors in class k is modelled as N (j, ), choosing class +1 over
—1 involves:

a+1—|—be>a_1+be & a, +blx >0,

where a, = ay; —da_y, b, = b+1 —b_,.

@ Thus, hypothesis space of two-class LDA consists of functions
f(x) = sign(a + bTx).

@ We obtain coefficients & and b, and thus the function f through fitting the
parameters of the generative model.

@ Discriminative learning: restrict % to a class of functions
f(x) = sign(a + b " x) and select a and b which minimize empirical risk.



Space of linear decision functions

@ Hypothesis space H = {f : f(x) = sign(a + b x),a € R,b € R’}
@ Find a, b that minimize the empirical risk under 0-1 loss:

1 n
in — L(yi, fap(xi
argmin , ; Visfup (X))

a,b

1 i: {O if y; = sign(a + b " x;)

= argmin — i
ap N |1 otherwise

n

! .
agmin 3™ 1 -snt 575

i=1

@ Combinatorial problem - not typically possible to solve...
@ Maybe easier with a different loss function? (Logistic regression)



. T TR o' Fegrosion
Linearity of log-posterior odds

@ Another way to express linear decision boundary of LDA:

p(Y =+1X=x)

= b x.
pV=—Ix=x) 77

log

@ Solve explicitly for conditional class probabilities:
1
pY=+1|X=x) = = s(a+b'x)

1

1 +exp(—(a+blx)

pY=—-1X=x) = =s(—a— bTx)

(
1+ exp(+(a+bTx))

where s(-) is the logistic function
1
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Logistic Regression

@ Consider maximizing the conditional log likelihood:

n

((a,b) = logp(¥ = yilX =x;) = > —log(1 +exp(—yila+b'x;)))

i=1 i=1

@ Equivalent to minimizing the empirical risk associated with the log loss:

n

Rﬁgp = % Zlog(l + exp(—yi(a+ bTx,»))) = % Z —log(s(yi(a + bTx,-)))

i=1 i=1

Pa,b (vilxi)
4 : : : :
Log Loss (log(1+exp(-y(a+b’x))))
----- 0-1 Loss (1/2+sign(-y(a+b’x))/2)
3 . 4
2 .
1= === == -
1
0 1




Logistic Regression

@ Not possible to find optimal a, b analytically.

@ For simplicitiy, absorb a as an entry in b by
appending ’1’ into x vector.

@ Objective function:

n

1
R = LS togstua )

i=1

Logistic Function

( 7 =1-s(2)
Ves(z) = s(z)s(=2)
V:logs(z) = s(—2)
Vlogs(z) = —s(z)s(—z

@ Differentiate wrt b:

n

1
VbRﬁ)n;p = Z —s(—y[x;'—b)yixi
i=1

1
ViRiog = > sy b)s(—yix|

i=1

b)xixl-T




Logistic Regression

@ Second derivative is positive-definite: objective function is convex and
there is a single unique global minimum.
@ Many different algorithms can find optimal b, e.g.:
o Gradient descent:

n

1
bnew —b - —y; Tb X
+en g s(—yix; b)yix

i=1

@ Stochastic gradient descent:

v _ b+e,|1( ol Z —yix; b)yixi
i€l(r)

where I(z) is a subset of the data at iteration ¢, and ¢, — 0 slowly
(>, e =003, e < 00).
o Newton-Raphson:

b = b — (VyRe") ™ ViRpg”

This is also called iterative reweighted least squares.
o Conjugate gradient, LBFGS and other methods from numerical analysis.



Logistic Regression vs. LDA

@ Both have linear decision boundaries and model log-posterior odds as

p(Y =+1X =x)

= bl
pr=—ix=x) 777

log

@ LDA models the marginal density of x as a Gaussian mixture with shared
covariance
g(x) = TN (xp—1, ) + w1 N (x; g1, )
and fits the parameters 0 = (u_1, py1, m—1, 741, X) by maximizing joint
likelihood "7, p(x;,y:|0). a and b are then determined from 6.
@ Logistic regression leaves the marginal density g(x) as an arbitrary

density function, and fits the parameters a,b by maximizing the
conditional likelihood Y"7_| p(yi|x:; a, b).



Logistic Regression

Properties of logistic regression:
@ Makes less modelling assumptions than generative classifiers.

@ A simple example of a generalised linear model (GLM). Much statistical
theory:

assessment of fit via deviance and plots,

interpretation of entries of b as odds-ratios,

fitting categorical data (sometimes called multinomial logistic regression),

well founded approaches to removing insignificant features (drop-in

deviance test, Wald test).



Supervised Learning Logistic Regression

Example: Spam Dataset

A data set collected at Hewlett-Packard Labs, that classifies 4601 e-mails as
spam or non-spam. 57 variables indicate the frequency of certain words and
characters.

> library (kernlab)
> data (spam)
> dim(spam)
[1] 4601 58
> spam[1l:2,]
make address all num3d our over remove internet order mail receive will

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 0 0.00 0.00 0.64

2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 0 0.94 0.21 0.79
people report addresses free business email you credit your font num000

1 0.00 0.00 0.00 0.32 0.00 1.29 1.93 0 0.96 0 0.00

2 0.65 0.21 0.14 0.14 0.07 0.28 3.47 0 1.59 0 0.43
money hp hpl george numé650 lab labs telnet num857 data num41l5 num85

1 0.00 O 0 0 0 0 0 0 0 0 0 0

2 0.43 0 0 0 0 0 0 0 0 0 0 0
technology numl999 parts pm direct cs meeting original project re edu table

1 0 0.00 0 0 0 0 0 0 0 0 00

2 0 0.07 0 0 0 0 0 0 0 0 00
conference charSemicolon charRoundbracket charSquarebracket charExclamation

1 0 0 0.000 0 0.778

2 0 0 0.132 0 0.372
charDollar charHash capitalAve capitallong capitalTotal type

1 0.00 0.000 3.756 61 278 spam

2 0.18 0.048 5.114 101 1028 spam

> str (spam$type)
Factor w/ 2 levels "nonspam","spam": 2 2 2 2 2 2 2 2 2 2



Spam Dataset

Use logistic regression to predict spam/not spam.

## let Y=0 be non-spam and Y=1 be spam.
Y <- as.numeric (spam$type) -1
X <- spam[ ,-ncol (spam) ]

gl <= glm(Y ~ ., data=X,family=binomial)

Which predictor variables seem to be important? Can for example check
which ones are significant in the GLM.

> summary (gl)
Call:
glm(formula = ¥ ~ ., family = binomial, data = X)

Deviance Residuals:
Min 10 Median 30 Max
-4.127e+00 -2.030e-01 -1.967e-06 1.140e-01 5.364e+00



Spam Dataset

Coefficients:

(Intercept)
make
address
all
num3d
our
over
remove
internet
order
mail
receive
will
people
report
addresses
business
email
you
credit

.569e+00
.895e-01
.458e-01
.141le-01
.252e+00
.624e-01
.830e-01
.279e+00
.696e-01
.343e-01
.275e-01
.557e-01
.383e-01
.961le-02
.447e-01
.236e+00
.599e-01
.203e-01
.131e-02
.047e+00

1.

O WENJORFENJdNDJdINEFE WD E RPN

-1.
-2.

1.
.494
.524
.534
.846
.387
.5717
.755
.858
-1.
-0.
.061
.704
.264
.027
.320
.946

DWW

I N R N

Estimate Std. Error z value
420e-01 -11.
.315e-01
.928e-02
.103e-01
.507e+00
.018e-01
.498e-01
.328e-01
.682e-01
.849e-01
.262e-02
.979%e-01
.405e-02
.303e-01
.364e-01
.254e-01
.251le-01
.172e-01
.505e-02
.383e-01

044
683
104
035

868
346

Pr(>lzl)
< 2e-16
.092388
.035362
.300759
.135168
.31e-08
.000409
.57e-12
.000707
.009958
.079230
.390655
.061773
.729557
.288855
.088370
.0le-05
.304533
.020334
.051675
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* KKk
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* %k
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Spam Dataset

your
font
num000
money

hp

hpl
george
num650
lab

labs
telnet
num857
data
num415
num85
technology
numl999
parts

pm
direct
cs
meeting
original
project
re

NN N

-7

.41%e-01
.013e-01
.245e+00
.264e-01
-1.
-1.
-1.
.454e-01
-2.
-3.
-1.
.549e+00
.383e-01
.679e-01
-2.
.237e-01
.651e-02
-5.
-8.
-3.
-4.
-2.
-1.
-1.
=7.

920e+00
040e+00
177e+01

486e+00
299e-01
702e-01

055e+00

968e-01
650e-01
046e-01
505e+01
689e+00
247e+00
573e+00
923e-01

H OUOoNWWBRE WO, WWsWEREENDDSWR SRR O

.243e-02
.627e-01
.714e-01
.621e-01
.128e-01
.396e-01
.113e+00
.991e-01
.502e+00
.137e-01
.815e-01
.283e+00
.117e-01
.601e+00
.883e-01
.091e-01
.754e-01
.232e-01
.828e-01
.636e-01
.660e+01
.384e-01
.064e-01
.292e-01
.556e-01

IS

D

-2

.615
.238
.762
.630
.139
-2.
-5.
.237
-1.
-1.
-0.
.776
.369
.417
-2.
.989
.265
-1.
-2.
-0.
-1.
-3.
-1.
-2.
-5.

366
569

656
052
353

607

410
260
838
694
207
547
973
091

WO OOOOOOOOOOOOOOOONO®WOHRHOW

.94e-06
.215838
.91e-06
.008535
.31le-10
.017966
.57e-08
.025255
.097744
.292972
.723742
.437566
.017842
.676490
.009124
.002803
.790819
.158473
.023844
.402215
.090333
.001342
.121978
.002953
.56e-07
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Spam Dataset

edu -1.459e+00 2.686e-01 -5.434 5.52e-08
table -2.326e+00 1.659e+00 -1.402 0.160958
conference -4.016e+00 1.611e+00 -2.493 0.012672
charSemicolon -1.291e+00 4.422e-01 -2.920 0.003503
charRoundbracket -1.881le-01 2.494e-01 -0.754 0.450663
charSquarebracket -6.574e-01 8.383e-01 -0.784 0.432914
charExclamation 3.472e-01 8.926e-02 3.890 0.000100
charDollar 5.336e+00 7.064e-01 7.553 4.24e-14
charHash 2.403e+00 1.113e+00 2.159 0.030883
capitalAve 1.199e-02 1.884e-02 0.636 0.524509
capitalLong 9.118e-03 2.521e-03 3.618 0.000297
capitalTotal 8.437e-04 2.251e-04 3.747 0.000179

Signif. codes: 0 ’"x%x’ 0.001 "%x’ 0.01 "%’ 0.05 ".” 0.1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 6170.2 on 4600 degrees of freedom

Residual deviance: 1815.8 on 4543 degrees of freedom

AIC: 1931.8

Number of Fisher Scoring iterations: 13

* KKk

* %k
* %k

*

* KKk

* ko



Spam Dataset

How good is the classification?

> proba <- predict (gl,type="response")
> predicted_spam <- as.numeric( proba>0.5)
> table (predicted_spam,Y)

Y
predicted_spam 0 1

0 2666 194

1 122 1619

> predicted_spam <- as.numeric( proba>0.99)
> table (predicted_spam,Y)
Y
predicted_spam 0 1
0 2776 1095
1 12 718

Advantage of a probabilistic approach: probabilities give interpretable
confidence to predictions.



Spam Dataset

Success rate is calculated on the same data that the GLM is trained on!
Separate in training and test set.

n <- length(Y)

train <- sample( n, round(n/2) )
test<-(l:n) [-train]

Fit only on training set and predict on both training and test set.

gl <= glm(Y[train] ~ ., data=X[train,], family=binomial)

proba_train <- predict (gl,newdata=X[train,],type="response")
proba_test <- predict(gl,newdata=X[test,],type="response")

predicted_spam_lr_train <- as.numeric(proba_train > 0.95)
predicted_spam_lr_test <- as.numeric (proba_test > 0.95)



Spam Dataset

Results for training and test set:

> table (predicted_spam_lr_train, Y[train])

predicted_spam_lr_train 0 1
0 1398 363
1 9 530

> table (predicted_spam_lr_test, Y[test])
predicted_spam_lr_test 0 1

0 1357 357

1 24 563

Note: testing performance is worse than training performance.



Spam Dataset

Compare with LDA.

library (MASS)
lda_res <- lda(x=X[train,],grouping=Y[train])

proba_lda_test <- predict (lda_res,newdata=X[test,]) $posterior[,2]
predicted_spam_lda_test <- as.numeric (proba_lda_test > 0.95)

> table (predicted_spam_lr_test, Y[test])
predicted_spam_lr_test 0 1

0 1357 357

1 24 563

> table (predicted_spam_lda_test, Y[test])
predicted_spam_lda_test 0 1

0 1365 534

1 16 386

It looks like LDA might be beating logistic regression here, but this is across a
single threshold 0.95. Does this persist across multiple thresholds?
Answer: ROC curves.



Performance Measures

@ Confusion matrix:
True state | 0 1
Prediction 0 # true negative # false negative
1 # false positive  # true positive

Accuracy: (TP + TN)/(TP + TN + FP + FN).
Error rate: (FP + FN)/(TP + TN + FP + FN).
Sensitivity (true positive rate): TP/(TP + FN).
Specificity (true negative rate): 7N /(TN + FP).
Precision: TP/(TP + FP).

Recall (same as Sensitivity): TP/(TP + FN).

F1: harmonic mean of precision and recall.

@ As we vary the prediction
threshold ¢ from 0 to 1:

class 0 class 1

@ Specificity varies from 0 to 1.
@ Sensitivity goes from 1 to 0.

high L high
R minimize error o
sensitivity specificity



ROC Curves

ROC curve plots sensitivity versus specificity as threshold varies.

cvec <- seq(0.001,0.999,1length=1000)
specif <- numeric(length (cvec))
sensit <- numeric(length(cvec))
speciflr <- numeric (length(cvec))
sensitlr <- numeric (length(cvec))

for (cc in 1l:length(cvec)) {

sensit[cc] <- sum( proba_lda_test> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
specifcc] <- sum( proba_lda_test<=cvec[cc] & Y[test]==0)/sum(Y[test]==0)
sensitlrcc] <- sum( proba_test> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
speciflrcc] <- sum( proba_test<=cvec[cc] & Y[test]==0)/sum(Y[test]==0)

}
plot (specif, sensit,xlab="Specificity",ylab="Sensitivity", type="1", lwd=2)
lines (speciflr,sensitlr,col='"red’, lwd=2)



ROC Curves

ROC curve: LDA = black/full; LR = red/dashed.

Sensitivity

Specificity

LR beats LDA on this dataset in terms of area under ROC:
Wilcoxon-Mann-Whitney statistic: probability that the classifier will score a
randomly drawn positive example higher than a randomly drawn negative
example.



ROC Curves

R library ROCR contains various performance measures

library (ROCR)
> pred_lda <- prediction(proba_lda_test,Y[test])
> perf_lda <- performance (pred_lda, "tpr", "tnr")

> pred_lr <- prediction (proba_test,Y[test])

> perf_lr <- performance (pred_lr, "tpr", "tnr")

> plot (perf_lda, lwd=2)

> plot (perf_lr, add=TRUE, col='red’, lwd=2, l1ty="dashed")

> auc_lda <- as.numeric (performance (pred_lda, "auc")@y.values)
> auc_lda

[1] 0.9580931

> auc_lr <- as.numeric (performance (pred_lr, "auc")@y.values)

> auc_lr

[1] 0.9668392

True positive rate

T T T T T T
00 02 04 06 08 10

True negative rate
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