
HT2015: SC4
Statistical Data Mining and Machine Learning

Dino Sejdinovic
Department of Statistics

Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

Supervised Learning Statistical Learning Theory

Generative vs Discriminative Learning

Generative learning: find parameters which explain all the data
available.

θ̂ = argmax
θ

n∑
i=1

log p(xi, yi|θ)

Examples: LDA, naïve Bayes.
Makes use of all the data available.
Flexible framework, can incorporate other tasks, incomplete data.
Stronger modelling assumptions.

Discriminative learning: find parameters that aid in prediction.

θ̂ = argmin
θ

1
n

n∑
i=1

L(yi, fθ(xi)) or θ̂ = argmax
θ

n∑
i=1

log p(yi|xi, θ)

Examples: logistic regression, support vector machines.
Typically performs better on a given task.
Weaker modelling assumptions.
Can overfit more easily.

Supervised Learning Statistical Learning Theory

Generative Learning

We work with a joint distribution pX,Y(x, y) over data vectors and labels.
A learning algorithm: construct f : X → Y which predicts the label of X.
Given a loss function L, the risk R of f (X) is

R(f) = EpX,Y [L(Y, f (X))]

For 0/1 loss in classification, Bayes classifier

fBayes(x) = argmax
k=1,...,K

p(Y = k|x) = argmax
k=1,...,K

pX,Y(x, k)

has the minimum risk (Bayes risk), but is unknown since pX,Y is unknown.
Assume a parameteric model for the joint: pX,Y(x, y) = pX,Y(x, y|θ)
Fit θ̂ = argmaxθ

∑n
i=1 log p(xi, yi|θ) and plug in back to Bayes classifier:

f̂ (x) = argmax
k=1,...,K

pX,Y(x, k|θ̂).

Supervised Learning Statistical Learning Theory

Hypothesis space and Empirical Risk Minimization

Find best function in H minimizing the risk:

f? = argmin
f∈H

EX,Y [L(Y, f (X))]

Empirical Risk Minimization (ERM): minimize the empirical risk instead,
since we typically do not know PX,Y .

f̂ = argmin
f∈H

1
n

n∑
i=1

L(yi, f (xi))

Hypothesis space H is the space of functions f under consideration.
How complex should we allow functions f to be? If hypothesis space H is
“too large”, ERM will overfit. Function

f̂ (x) =

{
yi if x = xi,

0 otherwise

will have zero empirical risk, but is useless for generalization, since it has
simply “memorized” the dataset.

Supervised Learning Statistical Learning Theory

Training and Test Performance

Training error is the empirical risk

1
n

n∑
i=1

L(yi, f (xi))

For 0-1 loss in classification, this is the misclassification error on the
training data {xi, yi}n

i=1, which were used in learning f .
Test error is the empirical risk on new, previously unseen observations
{x̃i, ỹi}m

i=1

1
m

m∑
i=1

L(ỹi, f (x̃i))

which were NOT used in learning f .
Test error is a much better gauge of how well learned function
generalizes to new data.
The test error is in general larger than the training error.

Supervised Learning Statistical Learning Theory

Hypothesis space for two-class LDA

Assume we have two classes {+1,−1}.
Recall that the discriminant functions in LDA are linear. Assuming that
data vectors in class k is modelled as N (µk,Σ), choosing class +1 over
−1 involves:

a+1 + b>+1x > a−1 + b>−1x ⇔ a? + b>? x > 0,

where a? = a+1 − a−1, b? = b+1 − b−1.
Thus, hypothesis space of two-class LDA consists of functions
f (x) = sign(a + b>x).
We obtain coefficients â and b̂, and thus the function f̂ through fitting the
parameters of the generative model.
Discriminative learning: restrict H to a class of functions
f (x) = sign(a + b>x) and select â and b̂ which minimize empirical risk.

Supervised Learning Statistical Learning Theory

Space of linear decision functions

Hypothesis space H = {f : f (x) = sign(a + b>x), a ∈ R, b ∈ Rp}
Find a, b that minimize the empirical risk under 0-1 loss:

argmin
a,b

1
n

n∑
i=1

L(yi, fa,b(xi))

= argmin
a,b

1
n

n∑
i=1

{
0 if yi = sign(a + b>xi)

1 otherwise

= argmin
a,b

1
2n

n∑
i=1

[
1− sign(yi(a + b>xi))

]
.

Combinatorial problem - not typically possible to solve...
Maybe easier with a different loss function? (Logistic regression)

Supervised Learning Logistic Regression

Linearity of log-posterior odds

Another way to express linear decision boundary of LDA:

log
p(Y = +1|X = x)

p(Y = −1|X = x)
= a + b>x.

Solve explicitly for conditional class probabilities:

p(Y = +1|X = x) =
1

1 + exp(−(a + b>x))
=: s(a + b>x)

p(Y = −1|X = x) =
1

1 + exp(+(a + b>x))
= s(−a− b>x)

where s(·) is the logistic function

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

Supervised Learning Logistic Regression

Logistic Regression

Consider maximizing the conditional log likelihood:

`(a, b) =

n∑
i=1

log p(Y = yi|X = xi) =

n∑
i=1

− log(1 + exp(−yi(a + b>xi)))

Equivalent to minimizing the empirical risk associated with the log loss:

Remp
log =

1
n

n∑
i=1

log(1 + exp(−yi(a + b>xi))) =
1
n

n∑
i=1

− log(s(yi(a + b>xi))︸ ︷︷ ︸
p̂a,b(yi|xi)

)

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

Log Loss (log(1+exp(−y(a+b’x))))

0−1 Loss (1/2+sign(−y(a+b’x))/2)

Supervised Learning Logistic Regression

Logistic Regression

Not possible to find optimal a, b analytically.
For simplicitiy, absorb a as an entry in b by
appending ’1’ into x vector.
Objective function:

Remp
log =

1
n

n∑
i=1

− log s(yix>i b)

Logistic Function

s(−z) = 1− s(z)

∇zs(z) = s(z)s(−z)

∇z log s(z) = s(−z)

∇2
z log s(z) = −s(z)s(−z)

Differentiate wrt b:

∇bRemp
log =

1
n

n∑
i=1

−s(−yix>i b)yixi

∇2
bRemp

log =
1
n

n∑
i=1

s(yix>i b)s(−yix>i b)xix>i

Supervised Learning Logistic Regression

Logistic Regression

Second derivative is positive-definite: objective function is convex and
there is a single unique global minimum.
Many different algorithms can find optimal b, e.g.:

Gradient descent:

bnew = b + ε
1
n

n∑
i=1

s(−yix>i b)yixi

Stochastic gradient descent:

bnew = b + εt
1
|I(t)|

∑
i∈I(t)

s(−yix>i b)yixi

where I(t) is a subset of the data at iteration t, and εt → 0 slowly
(
∑

t εt =∞,
∑

t ε
2
t <∞).

Newton-Raphson:
bnew = b− (∇2

bRemp
log)−1∇bRemp

log

This is also called iterative reweighted least squares.
Conjugate gradient, LBFGS and other methods from numerical analysis.

Supervised Learning Logistic Regression

Logistic Regression vs. LDA

Both have linear decision boundaries and model log-posterior odds as

log
p(Y = +1|X = x)

p(Y = −1|X = x)
= a + b>x

LDA models the marginal density of x as a Gaussian mixture with shared
covariance

g(x) = π−1N (x;µ−1,Σ) + π+1N (x;µ+1,Σ)

and fits the parameters θ = (µ−1, µ+1, π−1, π+1,Σ) by maximizing joint
likelihood

∑n
i=1 p(xi, yi|θ). a and b are then determined from θ.

Logistic regression leaves the marginal density g(x) as an arbitrary
density function, and fits the parameters a,b by maximizing the
conditional likelihood

∑n
i=1 p(yi|xi; a, b).

Supervised Learning Logistic Regression

Logistic Regression

Properties of logistic regression:
Makes less modelling assumptions than generative classifiers.
A simple example of a generalised linear model (GLM). Much statistical
theory:

assessment of fit via deviance and plots,
interpretation of entries of b as odds-ratios,
fitting categorical data (sometimes called multinomial logistic regression),
well founded approaches to removing insignificant features (drop-in
deviance test, Wald test).

Supervised Learning Logistic Regression

Example: Spam Dataset
A data set collected at Hewlett-Packard Labs, that classifies 4601 e-mails as
spam or non-spam. 57 variables indicate the frequency of certain words and
characters.
> library(kernlab)
> data(spam)
> dim(spam)
[1] 4601 58
> spam[1:2,]
make address all num3d our over remove internet order mail receive will

1 0.00 0.64 0.64 0 0.32 0.00 0.00 0.00 0 0.00 0.00 0.64
2 0.21 0.28 0.50 0 0.14 0.28 0.21 0.07 0 0.94 0.21 0.79
people report addresses free business email you credit your font num000

1 0.00 0.00 0.00 0.32 0.00 1.29 1.93 0 0.96 0 0.00
2 0.65 0.21 0.14 0.14 0.07 0.28 3.47 0 1.59 0 0.43
money hp hpl george num650 lab labs telnet num857 data num415 num85

1 0.00 0 0 0 0 0 0 0 0 0 0 0
2 0.43 0 0 0 0 0 0 0 0 0 0 0
technology num1999 parts pm direct cs meeting original project re edu table

1 0 0.00 0 0 0 0 0 0 0 0 0 0
2 0 0.07 0 0 0 0 0 0 0 0 0 0
conference charSemicolon charRoundbracket charSquarebracket charExclamation

1 0 0 0.000 0 0.778
2 0 0 0.132 0 0.372
charDollar charHash capitalAve capitalLong capitalTotal type

1 0.00 0.000 3.756 61 278 spam
2 0.18 0.048 5.114 101 1028 spam
> str(spam$type)
Factor w/ 2 levels "nonspam","spam": 2 2 2 2 2 2 2 2 2 2 ...

Supervised Learning Logistic Regression

Spam Dataset

Use logistic regression to predict spam/not spam.

let Y=0 be non-spam and Y=1 be spam.
Y <- as.numeric(spam$type)-1
X <- spam[,-ncol(spam)]

gl <- glm(Y ~ ., data=X,family=binomial)

Which predictor variables seem to be important? Can for example check
which ones are significant in the GLM.

> summary(gl)
Call:
glm(formula = Y ~ ., family = binomial, data = X)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.127e+00 -2.030e-01 -1.967e-06 1.140e-01 5.364e+00

Supervised Learning Logistic Regression

Spam Dataset

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.569e+00 1.420e-01 -11.044 < 2e-16 ***
make -3.895e-01 2.315e-01 -1.683 0.092388 .
address -1.458e-01 6.928e-02 -2.104 0.035362 *
all 1.141e-01 1.103e-01 1.035 0.300759
num3d 2.252e+00 1.507e+00 1.494 0.135168
our 5.624e-01 1.018e-01 5.524 3.31e-08 ***
over 8.830e-01 2.498e-01 3.534 0.000409 ***
remove 2.279e+00 3.328e-01 6.846 7.57e-12 ***
internet 5.696e-01 1.682e-01 3.387 0.000707 ***
order 7.343e-01 2.849e-01 2.577 0.009958 **
mail 1.275e-01 7.262e-02 1.755 0.079230 .
receive -2.557e-01 2.979e-01 -0.858 0.390655
will -1.383e-01 7.405e-02 -1.868 0.061773 .
people -7.961e-02 2.303e-01 -0.346 0.729557
report 1.447e-01 1.364e-01 1.061 0.288855
addresses 1.236e+00 7.254e-01 1.704 0.088370 .
business 9.599e-01 2.251e-01 4.264 2.01e-05 ***
email 1.203e-01 1.172e-01 1.027 0.304533
you 8.131e-02 3.505e-02 2.320 0.020334 *
credit 1.047e+00 5.383e-01 1.946 0.051675 .

Supervised Learning Logistic Regression

Spam Dataset

your 2.419e-01 5.243e-02 4.615 3.94e-06 ***
font 2.013e-01 1.627e-01 1.238 0.215838
num000 2.245e+00 4.714e-01 4.762 1.91e-06 ***
money 4.264e-01 1.621e-01 2.630 0.008535 **
hp -1.920e+00 3.128e-01 -6.139 8.31e-10 ***
hpl -1.040e+00 4.396e-01 -2.366 0.017966 *
george -1.177e+01 2.113e+00 -5.569 2.57e-08 ***
num650 4.454e-01 1.991e-01 2.237 0.025255 *
lab -2.486e+00 1.502e+00 -1.656 0.097744 .
labs -3.299e-01 3.137e-01 -1.052 0.292972
telnet -1.702e-01 4.815e-01 -0.353 0.723742
num857 2.549e+00 3.283e+00 0.776 0.437566
data -7.383e-01 3.117e-01 -2.369 0.017842 *
num415 6.679e-01 1.601e+00 0.417 0.676490
num85 -2.055e+00 7.883e-01 -2.607 0.009124 **
technology 9.237e-01 3.091e-01 2.989 0.002803 **
num1999 4.651e-02 1.754e-01 0.265 0.790819
parts -5.968e-01 4.232e-01 -1.410 0.158473
pm -8.650e-01 3.828e-01 -2.260 0.023844 *
direct -3.046e-01 3.636e-01 -0.838 0.402215
cs -4.505e+01 2.660e+01 -1.694 0.090333 .
meeting -2.689e+00 8.384e-01 -3.207 0.001342 **
original -1.247e+00 8.064e-01 -1.547 0.121978
project -1.573e+00 5.292e-01 -2.973 0.002953 **
re -7.923e-01 1.556e-01 -5.091 3.56e-07 ***

Supervised Learning Logistic Regression

Spam Dataset

edu -1.459e+00 2.686e-01 -5.434 5.52e-08 ***
table -2.326e+00 1.659e+00 -1.402 0.160958
conference -4.016e+00 1.611e+00 -2.493 0.012672 *
charSemicolon -1.291e+00 4.422e-01 -2.920 0.003503 **
charRoundbracket -1.881e-01 2.494e-01 -0.754 0.450663
charSquarebracket -6.574e-01 8.383e-01 -0.784 0.432914
charExclamation 3.472e-01 8.926e-02 3.890 0.000100 ***
charDollar 5.336e+00 7.064e-01 7.553 4.24e-14 ***
charHash 2.403e+00 1.113e+00 2.159 0.030883 *
capitalAve 1.199e-02 1.884e-02 0.636 0.524509
capitalLong 9.118e-03 2.521e-03 3.618 0.000297 ***
capitalTotal 8.437e-04 2.251e-04 3.747 0.000179 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6170.2 on 4600 degrees of freedom
Residual deviance: 1815.8 on 4543 degrees of freedom
AIC: 1931.8

Number of Fisher Scoring iterations: 13

Supervised Learning Logistic Regression

Spam Dataset

How good is the classification?

> proba <- predict(gl,type="response")
> predicted_spam <- as.numeric(proba>0.5)
> table(predicted_spam,Y)

Y
predicted_spam 0 1

0 2666 194
1 122 1619

> predicted_spam <- as.numeric(proba>0.99)
> table(predicted_spam,Y)

Y
predicted_spam 0 1

0 2776 1095
1 12 718

Advantage of a probabilistic approach: probabilities give interpretable
confidence to predictions.

Supervised Learning Logistic Regression

Spam Dataset

Success rate is calculated on the same data that the GLM is trained on!
Separate in training and test set.

n <- length(Y)
train <- sample(n, round(n/2))
test<-(1:n)[-train]

Fit only on training set and predict on both training and test set.

gl <- glm(Y[train] ~ ., data=X[train,],family=binomial)

proba_train <- predict(gl,newdata=X[train,],type="response")
proba_test <- predict(gl,newdata=X[test,],type="response")

predicted_spam_lr_train <- as.numeric(proba_train > 0.95)
predicted_spam_lr_test <- as.numeric(proba_test > 0.95)

Supervised Learning Logistic Regression

Spam Dataset

Results for training and test set:

> table(predicted_spam_lr_train, Y[train])
predicted_spam_lr_train 0 1

0 1398 363
1 9 530

> table(predicted_spam_lr_test, Y[test])
predicted_spam_lr_test 0 1

0 1357 357
1 24 563

Note: testing performance is worse than training performance.

Supervised Learning Logistic Regression

Spam Dataset

Compare with LDA.

library(MASS)
lda_res <- lda(x=X[train,],grouping=Y[train])

proba_lda_test <- predict(lda_res,newdata=X[test,])$posterior[,2]
predicted_spam_lda_test <- as.numeric(proba_lda_test > 0.95)

> table(predicted_spam_lr_test, Y[test])
predicted_spam_lr_test 0 1

0 1357 357
1 24 563

> table(predicted_spam_lda_test, Y[test])
predicted_spam_lda_test 0 1

0 1365 534
1 16 386

It looks like LDA might be beating logistic regression here, but this is across a
single threshold 0.95. Does this persist across multiple thresholds?
Answer: ROC curves.

Supervised Learning Performance Measures and ROC

Performance Measures

Confusion matrix:
True state 0 1

Prediction 0 # true negative # false negative
1 # false positive # true positive

Accuracy: (TP + TN)/(TP + TN + FP + FN).
Error rate: (FP + FN)/(TP + TN + FP + FN).
Sensitivity (true positive rate): TP/(TP + FN).
Specificity (true negative rate): TN/(TN + FP).
Precision: TP/(TP + FP).
Recall (same as Sensitivity): TP/(TP + FN).
F1: harmonic mean of precision and recall.

As we vary the prediction
threshold c from 0 to 1:

Specificity varies from 0 to 1.
Sensitivity goes from 1 to 0.

class 1class 0

minimize error
high

specificity
high

sensitivity

Supervised Learning Performance Measures and ROC

ROC Curves

ROC curve plots sensitivity versus specificity as threshold varies.

cvec <- seq(0.001,0.999,length=1000)
specif <- numeric(length(cvec))
sensit <- numeric(length(cvec))
speciflr <- numeric(length(cvec))
sensitlr <- numeric(length(cvec))

for (cc in 1:length(cvec)){
sensit[cc] <- sum(proba_lda_test> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
specif[cc] <- sum(proba_lda_test<=cvec[cc] & Y[test]==0)/sum(Y[test]==0)
sensitlr[cc] <- sum(proba_test> cvec[cc] & Y[test]==1)/sum(Y[test]==1)
speciflr[cc] <- sum(proba_test<=cvec[cc] & Y[test]==0)/sum(Y[test]==0)

}
plot(specif,sensit,xlab="Specificity",ylab="Sensitivity",type="l",lwd=2)
lines(speciflr,sensitlr,col=’red’,lwd=2)

Supervised Learning Performance Measures and ROC

ROC Curves

ROC curve: LDA = black/full; LR = red/dashed.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Specificity

S
en

si
tiv

ity

LR beats LDA on this dataset in terms of area under ROC:
Wilcoxon-Mann-Whitney statistic: probability that the classifier will score a
randomly drawn positive example higher than a randomly drawn negative
example.

Supervised Learning Performance Measures and ROC

ROC Curves
R library ROCR contains various performance measures
library(ROCR)
> pred_lda <- prediction(proba_lda_test,Y[test])
> perf_lda <- performance(pred_lda, "tpr", "tnr")
> pred_lr <- prediction(proba_test,Y[test])
> perf_lr <- performance(pred_lr, "tpr", "tnr")
> plot(perf_lda,lwd=2)
> plot(perf_lr,add=TRUE,col=’red’,lwd=2,lty="dashed")
> auc_lda <- as.numeric(performance(pred_lda,"auc")@y.values)
> auc_lda
[1] 0.9580931
> auc_lr <- as.numeric(performance(pred_lr,"auc")@y.values)
> auc_lr
[1] 0.9668392

True negative rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

	Supervised Learning
	Statistical Learning Theory
	Logistic Regression
	Performance Measures and ROC

