
HT2015: SC4
Statistical Data Mining and Machine Learning

Dino Sejdinovic
Department of Statistics

Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

Supervised Learning LDA and Dimensionality Reduction

Fisher’s Linear Discriminant Analysis

LDA: a plug-in classifier assuming multivariate normal conditional density
gk(x) = gk(x|µk,Σ) for each class k sharing the same covariance Σ:

X|Y = k ∼N (µk,Σ),

gk(x|µk,Σ) =(2π)−p/2|Σ|−1/2 exp
(
−1

2
(x− µk)

>Σ−1(x− µk)

)
.

LDA minimizes the squared Mahalanobis distance between x and µ̂k,
offset by a term depending on estimated class probability π̂k:

fLDA(x) = argmax
k∈{1,...,K}

log π̂kgk(x|µ̂k, Σ̂)

= argmin
k∈{1,...,K}

(x− µ̂k)
>Σ̂−1(x− µ̂k)− 2 log π̂k︸ ︷︷ ︸

terms depending on k linear in x

.

Supervised Learning LDA and Dimensionality Reduction

Fisher’s Linear Discriminant Analysis

In LDA, data vectors are classified based on Mahalanobis distance to
class means.
All class means lie on a (K − 1)-dimensional affine subspace: Decisions
are unaffected by the directions orthogonal to this subspace.
Projecting data vectors onto the subspace can be viewed as a
dimensionality reduction technique that preserves discriminative
information about the labels {yi}n

i=1: going from Rp to RK−1.
As with PCA, we can visualize the structure in the data by choosing an
appropriate basis for the subspace and projecting data onto it.
Change of basis that finds directions that best separate classes.

Supervised Learning LDA and Dimensionality Reduction

LDA projections

Figure by R. Gutierrez-Osuna

Supervised Learning LDA and Dimensionality Reduction

Discriminant Coordinates

Find a direction v ∈ Rp to maximize the variance ratio
v>Bv
v>Σv

where

Σ = 1
n

∑n
i=1(xi − µyi)(xi − µyi)

> (within-class covariance)

B = 1
n

∑K
k=1 nk(µk − x̄)(µk − x̄)> (between-class covariance)

B has rank at most K − 1.
Figure from Hastie et al.

Supervised Learning LDA and Dimensionality Reduction

Discriminant Coordinates

To solve for the optimal v, we first reparameterize it as u = Σ
1
2 v.

v>Bv
v>Σv

=
u>(Σ−

1
2)>BΣ−

1
2 u

u>u
=

u>B∗u
u>u

where B∗ = (Σ−
1
2)>BΣ−

1
2 .

The maximization over u is achieved by the first eigenvector u1 of B∗.
We also look at the remaining eigenvectors ul associated to the non-zero
eigenvalues and define the discriminant coordinates as vl = Σ−

1
2 ul.

The vl’s span exactly the affine subspace spanned by (Σ−1µk)
K
k=1 (these

vectors are given as the “linear discriminants” in the R-function lda).

Supervised Learning LDA and Dimensionality Reduction

Crabs Dataset

library(MASS)
data(crabs)

create class labels (species+sex)
crabs$spsex=factor(paste(crabs$sp,crabs$sex,sep=""))
ct <- unclass(crabs$spsex)

LDA on crabs in log-domain
cb.lda <- lda(log(crabs[,4:8]),ct)

Supervised Learning LDA and Dimensionality Reduction

Crabs Dataset

> cb.lda
Call:
lda(log(crabs[, 4:8]), ct)

Prior probabilities of groups:
1 2 3 4

0.25 0.25 0.25 0.25

Group means:
FL RW CL CW BD

1 2.564985 2.475174 3.312685 3.462327 2.441351
2 2.672724 2.443774 3.437968 3.578077 2.560806
3 2.852455 2.683831 3.529370 3.649555 2.733273
4 2.787885 2.489921 3.490431 3.589426 2.701580

Coefficients of linear discriminants:
LD1 LD2 LD3

FL -31.217207 -2.851488 25.719750
RW -9.485303 -24.652581 -6.067361
CL -9.822169 38.578804 -31.679288
CW 65.950295 -21.375951 30.600428
BD -17.998493 6.002432 -14.541487

Proportion of trace:
LD1 LD2 LD3

0.6891 0.3018 0.0091

Supervised Learning LDA and Dimensionality Reduction

Crabs Dataset

cb.ldp <- predict(cb.lda)
pairs(cb.ldp$x,pch=ct,col=ct)

LD1

−4 −2 0 2 4

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●●●

●

●
●

●

●

●● ●
●

−
6

−
4

−
2

0
2

4
6

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●● ●

●

●
●

●

●

●●●
●

−
4

−
2

0
2

4

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

LD2 ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

−6 −4 −2 0 2 4 6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

LD3

Supervised Learning LDA and Dimensionality Reduction

Crabs Dataset

cb.ldp12 <- cb.ldp$x[,1:2]
eqscplot(cb.ldp12,pch=ct,col=ct)

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

Supervised Learning LDA and Dimensionality Reduction

Crabs Dataset

display the decision boundaries
take a lattice of points in LD-space
x <- seq(-6,7,0.02)
y <- seq(-6,7,0.02)
z <- as.matrix(expand.grid(x,y))
m <- length(x)
n <- length(y)

perform LDA on first two discriminant directions
cb.lda_new <- lda(cb.ldp12,ct)
predict onto the grid
cb.ldpp <- predict(cb.lda_new,z)$class

classes are 1,2,3 and 4 so set contours
at 1.5,2.5 and 3.5
contour(x,y,matrix(cb.ldpp,m,n),

levels=c(1.5,2.5,3.5),
add=TRUE,d=FALSE,lty=2)

Supervised Learning LDA and Dimensionality Reduction

Crabs Dataset

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

Supervised Learning LDA and Dimensionality Reduction

LDA vs PCA projections

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

Comp.1

C
om

p.
2

LDA separates the groups better.

Supervised Learning LDA and Dimensionality Reduction

LDA vs PCA projections

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●
●

−0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Comp.2

C
om

p.
3

LDA separates the groups better.

Supervised Learning Quadratic Discriminant Analysis

Conditional densities with different covariances

Given training data with K classes, assume a parametric form for conditional
density gk(x), where for each class

X|Y = k ∼ N (µk,Σk),

i.e., instead of assuming that every class has a different mean µk with the
same covariance matrix Σ (LDA), we now allow each class to have its own
covariance matrix.
Considering logπkgk(x) as before,

logπkgk(x) = const + log(πk)−
1
2
(
log |Σk|+ (x− µk)

TΣ−1
k (x− µk)

)
= const + log(πk)−

1
2
(
log |Σk|+ µT

k Σ−1
k µk

)
+µT

k Σ−1
k x− 1

2
xTΣ−1

k x

= ak + bT
k x + xTckx.

A quadratic discriminant function instead of linear.

Supervised Learning Quadratic Discriminant Analysis

Quadratic decision boundaries

Again, by considering when we choose class k over k′,

0 > ak + bT
k x + xTckx− (ak′ + bT

k′x + xTck′x)

= a? + bT
?x + xTc?x

we see that the decision boundaries of the Bayes Classifier are quadratic
surfaces.

The plug-in Bayes Classifer under these assumptions is known as the
Quadratic Discriminant Analysis (QDA) Classifier.

Supervised Learning Quadratic Discriminant Analysis

QDA

LDA classifier:

fLDA(x) = arg min
k∈{1,...,K}

{
(x− µ̂k)

TΣ̂−1(x− µ̂k)− 2 log(π̂k)
}

QDA classifier:

fQDA(x) = arg min
k∈{1,...,K}

{
(x− µ̂k)

TΣ̂k
−1(x− µ̂k)− 2 log(π̂k) + log(|Σ̂k|)

}

for each point x ∈ X where the plug-in estimate µ̂k is as before and Σ̂k is (in
contrast to LDA) estimated for each class k = 1, . . . ,K separately:

Σ̂k =
1
nk

∑
j:yj=k

(xj − µ̂k)(xj − µ̂k)
T .

Supervised Learning Quadratic Discriminant Analysis

Computing and plotting the QDA boundaries.

##fit QDA
iris.qda <- qda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y),0)
m <- length(x)
n <- length(y)

iris.qdp <- predict(iris.qda,z)$class
contour(x,y,matrix(iris.qdp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)

Supervised Learning Quadratic Discriminant Analysis

Iris example: QDA boundaries

●●● ●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

●●●●

●

● ●

●●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

P
et

al
.W

id
th

Supervised Learning Quadratic Discriminant Analysis

Iris example: QDA boundaries

●●● ●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

●●●●

●

● ●

●●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

P
et

al
.W

id
th

Supervised Learning Quadratic Discriminant Analysis

LDA or QDA?

Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.
If the covariances of different classes are very distinct, QDA will probably
have an advantage over LDA.
Parametric models are only ever approximations to the real world,
allowing more flexible decision boundaries (QDA) may seem like a
good idea. However, there is a price to pay in terms of increased
variance and potential overfitting.

Supervised Learning Naïve Bayes

Naïve Bayes

Assume we are interested in classifying documents, e.g., scientific
articles or emails.
A basic standard model for text classification consists of considering a
pre-specified dictionary of p words and summarizing each document i by
a binary vector xi where

x(j)
i =

{
1 if word j is present in document
0 otherwise.

Presence of the word j is the j-the feature/dimension.
To implement a probabilistic classifier, we need to model for the
conditional probability mass function gk(x) = P(X = x|Y = k) for each
class k = 1, ...,K.

Supervised Learning Naïve Bayes

Naïve Bayes

Naïve Bayes is a plug-in classifier which ignores feature correlations1

and assumes:

gk(xi) = P(X = xi|Y = k) =

p∏
j=1

P(X(j) = x(j)
i |Y = k)

=

p∏
j=1

(φkj)
x(j)

i (1− φkj)
1−x(j)

i ,

where we denoted parametrized conditional PMF with
φkj = P(X(j) = 1|Y = k) (probability that j-th word appears in class k
document).
Given dataset, the MLE of the parameters is:

π̂k =
nk

n
, φ̂kj =

∑
i:yi=k x(j)

i

nk
.

1given the class, it assumes each word appears in a document independently of all others

Supervised Learning Naïve Bayes

Naïve Bayes

MLE:

π̂k =
nk

n
, φ̂kj =

∑
i:yi=k x(j)

i

nk
.

One problem: if the `-th word did not appear in documents labelled as
class k then φ̂k` = 0 and

P(Y = k|X = x with `-th entry equal to 1)

∝ π̂k

p∏
j=1

(
φ̂kj

)x(j) (
1− φ̂kj

)1−x(j)

= 0

i.e. we will never attribute a new document containing word ` to class k
(regardless of other words in it).
An example of overfitting.

	Supervised Learning
	LDA and Dimensionality Reduction
	Quadratic Discriminant Analysis
	Naïve Bayes

