HT2015: SC4 Statistical Data Mining and Machine Learning

Dino SejdinovicDepartment of Statistics Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

Supervised Learning

Unsupervised learning:

- To "extract structure" and postulate hypotheses about data generating process from "unlabelled" observations x_1, \ldots, x_n .
- Visualize, summarize and compress data.

Supervised learning:

- In addition to the observations of X, we have access to their response variables / labels $Y \in \mathcal{Y}$: we observe $\{(x_i, y_i)\}_{i=1}^n$.
- Types of supervised learning:
 - Classification: discrete responses, e.g. $\mathcal{Y} = \{+1, -1\}$ or $\{1, \dots, K\}$.
 - Regression: a numerical value is observed and $\mathcal{Y} = \mathbb{R}$.

The goal is to accurately predict the response Y on new observations of X, i.e., to **learn a function** $f: \mathbb{R}^p \to \mathcal{Y}$, such that f(X) will be close to the true response Y.

Regression Example: Boston Housing

The original data are 506 observations on 13 variables X; medv is the response variable Y.

```
crim
        per capita crime rate by town
        proportion of residential land zoned for lots
7. n
        over 25,000 sq.ft
indus
       proportion of non-retail business acres per town
      Charles River dummy variable (= 1 if tract bounds river:
chas
        0 otherwise)
        nitric oxides concentration (parts per 10 million)
nox
        average number of rooms per dwelling
rm
        proportion of owner-occupied units built prior to 1940
age
dis
        weighted distances to five Boston employment centers
        index of accessibility to radial highways
rad
        full-value property-tax rate per USD 10,000
tax
ptratio pupil-teacher ratio by town
h
        1000(B - 0.63)^2 where B is the proportion of blacks by town
lstat
       percentage of lower status of the population
medv
        median value of owner-occupied homes in USD 1000's
```

Regression Example: Boston Housing

```
> str(X)
'data.frame': 506 obs. of 13 variables:
 $ crim
         : num
              0.00632 0.02731 0.02729 0.03237 0.06905 ...
              18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ 7.n
     : nim
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas
       : int 0000000000...
$ nox : num
               0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524
               6.58 6.42 7.18 7.00 7.15 ...
$ rm
     : num
$ age : num
               65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
         : num 4.09 4.97 4.97 6.06 6.06 ...
$ dis
         : int 1 2 2 3 3 3 5 5 5 5 ...
$ rad
         : num 296 242 242 222 222 211 311 311 311 ...
$ tax
$ ptratio: num
               15.3 17.8 17.8 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ black : num 397 397 393 395 397 ...
$ 1stat : num 4.98 9.14 4.03 2.94 5.33 ...
> str(Y)
num[1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
```

Goal: predict median house price Y given 13 predictor variables X of a new district.

Classification Example: Lymphoma

> str(X)

We have gene expression measurements X of n=62 patients for p=4026 genes. For each patient, $Y \in \{0,1\}$ denotes one of two subtypes of cancer. Goal: predict cancer subtype given gene expressions of a new patient.

```
'data.frame':
             62 obs. of 4026 variables:
$ Gene 1
           : num -0.344 -1.188 0.520 -0.748 -0.868 ...
$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330 ...
$ Gene 3 : num -0.776 -0.588 0.409 -0.991 -1.517 ...
$ Gene 4
           : num -0.474 -1.588 0.219 0.978 -1.604 ...
$ Gene 5
           : num -1.896 -1.960 -1.695 -0.348 -0.595 ...
$ Gene 6
           : num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 7
           : num -1.875 -1.818 0.317 0.387 0.041 ...
$ Gene 8
           : num
                 -1.539 -2.433 -0.337 -0.522 -0.668 ...
                 -0.604 -0.710 -1.269 -0.832 0.458 ...
$ Gene 9
           : num
$ Gene 10
           : num
                  -0.218 -0.487 -1.203 -0.919 -0.848 ...
                 -0.340 1.164 1.023 1.133 -0.541 ...
$ Gene 11
           : num
$ Gene 12
           : num
                  -0.531 0.488 -0.335 0.496 -0.358 ...
> str(Y)
num [1:62]
           0 0 0 1 0 0 1 0 0 0 ...
```

Loss function

- Suppose we made a prediction $\hat{Y} = f(X) \in \mathcal{Y}$ based on observation of X.
- How good is the prediction? We can use a **loss function** $L: \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}^+$ to formalize the quality of the prediction.
- Typical loss functions:
 - Misclassification loss (or 0-1 loss) for classification

$$L(Y,f(X)) = \begin{cases} 0 & f(X) = Y \\ 1 & f(X) \neq Y \end{cases}.$$

Squared loss for regression

$$L(Y,f(X)) = (f(X) - Y)^{2}.$$

- Many other choices are possible, e.g., weighted misclassification loss.
- In classification, if estimated probabilities $\hat{p}(k)$ for each class $k \in \mathcal{Y}$ are returned, **log-likelihood loss** (or **log loss**) $L(Y,\hat{p}) = -\log \hat{p}(Y)$ is often used.

Risk

• paired observations $\{(x_i, y_i)\}_{i=1}^n$ viewed as i.i.d. realizations of a random variable (X, Y) on $\mathcal{X} \times \mathcal{Y}$ with joint distribution P_{XY}

Risk

For a given loss function L, the **risk** R of a learned function f is given by the expected loss

$$R(f) = \mathbb{E}_{P_{XY}} \left[L(Y, f(X)) \right],$$

where the expectation is with respect to the true (unknown) joint distribution of (X, Y).

• The risk is unknown, but we can compute the empirical risk:

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)).$$

The Bayes Classifier

- What is the optimal classifier if the joint distribution (X, Y) were known?
- The density g of X can be written as a mixture of K components (corresponding to each of the classes):

$$g(x) = \sum_{k=1}^{K} \pi_k g_k(x),$$

where, for $k = 1, \ldots, K$,

- $\mathbb{P}(Y = k) = \pi_k$ are the class probabilities,
- $g_k(x)$ is the conditional density of X, given Y = k.
- The **Bayes classifier** $f_{\text{Bayes}}: x \mapsto \{1, \dots, K\}$ is the one with minimum risk:

$$R(f) = \mathbb{E}\left[L(Y, f(X))\right] = \mathbb{E}_X \left[\mathbb{E}_{Y|X}[L(Y, f(X))|X]\right]$$
$$= \int_{\mathcal{X}} \mathbb{E}\left[L(Y, f(X))|X = x\right] g(x) dx$$

- The minimum risk attained by the Bayes classifier is called **Bayes risk**.
- Minimizing $\mathbb{E}[L(Y, f(X))|X = x]$ separately for each x suffices.

The Bayes Classifier

- Consider the 0-1 loss.
- The risk simplifies to:

$$\mathbb{E}\Big[L(Y,f(X))\big|X=x\Big] = \sum_{k=1}^{K} L(k,f(x))\mathbb{P}(Y=k|X=x)$$
$$=1 - \mathbb{P}(Y=f(x)|X=x)$$

 The risk is minimized by choosing the class with the greatest posterior probability:

$$\begin{split} f_{\mathsf{Bayes}}(x) &= \underset{k=1,...,K}{\arg\max} \, \mathbb{P}(Y=k|X=x) \\ &= \underset{k=1,...,K}{\arg\max} \, \frac{\pi_k g_k(x)}{\sum_{i=1}^K \pi_j g_j(x)} = \underset{k=1,...,K}{\arg\max} \, \, \pi_k g_k(x). \end{split}$$

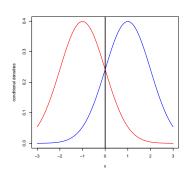
• The functions $x \mapsto \pi_k g_k(x)$ are called **discriminant functions**. The discriminant function with maximum value determines the predicted class of x.

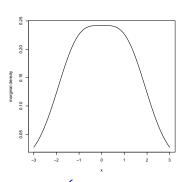
The Bayes Classifier: Example

A simple two Gaussians example: Suppose $X \sim \mathcal{N}(\mu_Y, 1)$, where $\mu_1 = -1$ and $\mu_2 = 1$ and assume equal priors $\pi_1 = \pi_2 = 1/2$.

$$g_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x+1)^2}{2}\right)$$

$$g_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x+1)^2}{2}\right)$$
 and $g_2(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-1)^2}{2}\right)$.

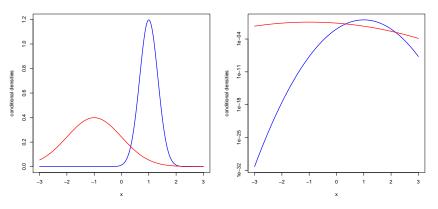




Optimal classification is $f_{\mathsf{Bayes}}(x) = \underset{k=1,\dots,K}{\arg\max} \ \pi_k g_k(x) = \begin{cases} 1 & \text{if } x < 0, \\ 2 & \text{if } x > 0. \end{cases}$

The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1 for class 1 but 1/3 for class 2?



Looking at density in a log-scale, optimal classification is to select class 2 if and only if $x \in [0.34, 2.16]$.

Plug-in Classification

 The Bayes Classifier chooses the class with the greatest posterior probability

$$f_{\mathsf{Bayes}}(x) = \underset{k=1,...,K}{\operatorname{arg max}} \pi_k g_k(x).$$

- We know neither the conditional densities g_k nor the class probabilities π_k !
- The plug-in classifier chooses the class

$$f(x) = \underset{k=1,...,K}{\arg\max} \, \hat{\pi}_k \hat{g}_k(x),$$

- where we plugged in
 - estimates $\hat{\pi}_k$ of π_k and k = 1, ..., K and
 - estimates $\hat{g}_k(x)$ of conditional densities,
- Linear Discriminant Analysis is an example of plug-in classification.

Linear Discriminant Analysis

- LDA is the most well-known and simplest example of plug-in classification.
- Assume multivariate normal conditional density $g_k(x)$ for each class k:

$$X|Y = k \sim \mathcal{N}(\mu_k, \Sigma),$$

 $g_k(x) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x - \mu_k)^{\top} \Sigma^{-1}(x - \mu_k)\right),$

- each class can have a **different mean** μ_k ,
- all classes share the same covariance Σ .
- For an observation x, the k-th log-discriminant function is

$$\log \pi_k g_k(x) = c + \log \pi_k - \frac{1}{2} (x - \mu_k)^{\top} \Sigma^{-1} (x - \mu_k)$$

The quantity $(x - \mu_k)^{\top} \Sigma^{-1} (x - \mu_k)$ is the squared **Mahalanobis distance** between x and μ_k .

• If $\Sigma = I_p$ and $\pi_k = \frac{1}{K}$, LDA simply chooses the class k with the nearest (in the Euclidean sense) class mean.

Linear Discriminant Analysis

• Expanding the term $(x - \mu_k)^{\top} \Sigma^{-1} (x - \mu_k)$,

$$\log \pi_k g_k(x) = c + \log \pi_k - \frac{1}{2} \left(\mu_k^\top \Sigma^{-1} \mu_k - 2\mu_k^\top \Sigma^{-1} x + x^\top \Sigma^{-1} x \right)$$
$$= c' + \log \pi_k - \frac{1}{2} \mu_k^\top \Sigma^{-1} \mu_k + \mu_k^\top \Sigma^{-1} x$$

• Setting $a_k = \log(\pi_k) - \frac{1}{2}\mu_k^\top \Sigma^{-1}\mu_k$ and $b_k = \Sigma^{-1}\mu_k$, we obtain

$$\log \pi_k g_k(x) = c' + a_k + b_k^{\top} x$$

i.e. a **linear** discriminant function in x.

Consider choosing class k over k':

$$a_k + b_k^{\top} x > a_{k'} + b_{k'}^{\top} x \qquad \Leftrightarrow \qquad a_{\star} + b_{\star}^{\top} x > 0$$

where $a_{\star} = a_k - a_{k'}$ and $b_{\star} = b_k - b_{k'}$.

- The Bayes classifier thus partitions \mathcal{X} into regions with the same class predictions via **separating hyperplanes**.
- The Bayes classifier under these assumptions is more commonly known as the LDA classifier.

Parameter Estimation

- How to estimate the parameters of the LDA model?
- We can achieve this by maximum likelihood (EM algorithm is not needed here since the class variables y_i are observed!).
- Let $n_k = \#\{j : y_i = k\}$ be the number of observations in class k.

$$\ell(\pi, (\mu_k)_{k=1}^K, \Sigma) = \log p\left((x_i, y_i)_{i=1}^n | \pi, (\mu_k)_{k=1}^K, \Sigma\right) = \sum_{i=1}^n \log \pi_{y_i} g_{y_i}(x_i)$$

$$= c + \sum_{k=1}^K \sum_{i: y_i = k} \log \pi_k - \frac{1}{2} \left(\log |\Sigma| + (x_j - \mu_k)^\top \Sigma^{-1} (x_j - \mu_k)\right)$$

ML estimates:

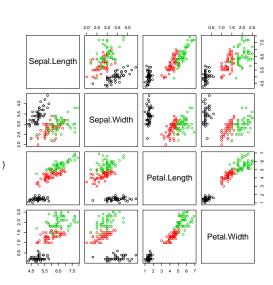
$$\hat{\pi}_k = \frac{n_k}{n}$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{j:y_j = k} x_j$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{k=1}^K \sum_{j:y_j = k} (x_j - \hat{\mu}_k) (x_j - \hat{\mu}_k)^\top$$

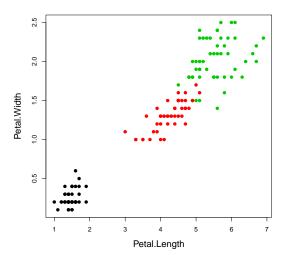
• Note: the ML estimate of Σ is biased. For an unbiased estimate we need to divide by n-K.

library(MASS)
data(iris)
##save class labels
ct <- unclass(iris\$Species)
##pairwise plot
pairs(iris[,1:4],col=ct)</pre>



Just focus on two predictor variables.

```
iris.data <- iris[,3:4]
plot(iris.data,col=ct,pch=20,cex=1.5,cex.lab=1.4)</pre>
```



##fit LDA

Computing and plotting the LDA boundaries.

