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Supervised Learning

Unsupervised learning:
@ To “extract structure” and postulate hypotheses about data generating
process from “unlabelled” observations xi, ..., x,.
@ Visualize, summarize and compress data.
Supervised learning:
@ In addition to the observations of X, we have access to their response
variables / labels Y € Y: we observe {(x;,y;)};_;-
@ Types of supervised learning:

e Classification: discrete responses, e.g. Y = {+1,—1}or {1,...,K}.
o Regression: a numerical value is observed and ) = R.

The goal is to accurately predict the response Y on new observations of X,
i.e., to learn a function f : R” — ), such that f(X) will be close to the true
response Y.



Regression Example: Boston Housing

The original data are 506 observations on 13 variables X; medv is the
response variable Y.

crim per capita crime rate by town

zZn proportion of residential land zoned for lots
over 25,000 sqg.ft

indus proportion of non-retail business acres per town

chas Charles River dummy variable (= 1 if tract bounds river;
0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)"2 where B is the proportion of blacks by town

lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s



Regression Example: Boston Housing

> str (X)

"data.frame’ : 506 obs. of 13 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905
$ zn :num 18 0 0 0 0 O 12.5 12.5 12.5 12.5
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87
$ chas :int 0000000000 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.°F
S rm : num 6.58 6.42 7.18 7.00 7.15
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9
$ dis :num 4.09 4.97 4.97 6.06 6.06
$ rad :int 1 223335555 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33

> str(Y)
num([1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9

Goal: predict median house price Y given 13 predictor variables X of a new
district.



Classification Example: Lymphoma
We have gene expression measurements X of n = 62 patients for p = 4026

genes. For each patient, Y € {0, 1} denotes one of two subtypes of cancer.
Goal: predict cancer subtype given gene expressions of a new patient.

> str (X)

"data.frame’ : 62 obs. of 4026 variables:
$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868
$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330
$ Gene 3 : num -0.776 -0.588 0.409 -0.991 -1.517
$ Gene 4 : num -0.474 -1.588 0.219 0.978 -1.604
$ Gene 5 : num -1.896 -1.960 -1.695 -0.348 -0.595
$ Gene 6 : num -2.075 -2.117 0.121 -0.800 0.651
$ Gene 7 : num -1.875 -1.818 0.317 0.387 0.041
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668
$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458
$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848
$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541
$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358

> str(Y)

num [1:62] 0 0 01 001 00O



Loss function

@ Suppose we made a prediction Y = f(X) € ) based on observation of X.

@ How good is the prediction? We can use a loss function L: ) x ) — RT
to formalize the quality of the prediction.

@ Typical loss functions:
o Misclassification loss (or 0-1 loss) for classification
: 0 fX)=Y
L(Y,f(X)) = .
rren={ 1 187

@ Squared loss for regression

L(Y.f(X)) = (f(X) — Y).

@ Many other choices are possible, e.g., weighted misclassification loss.

@ In classification, if estimated probabilities p(k) for each class k € Y are
returned, log-likelihood loss (or log loss) L(Y,p) = —logp(Y) is often
used.



Supervised Learning Decision Theory
Risk

@ paired observations {(x;,y;)};_, viewed as i.i.d. realizations of a random
variable (X, Y) on X x Y with joint distribution Pxy

Risk
For a given loss function L, the risk R of a learned function f is given by the
expected loss

R(f) = Epy, [L(Y,f(X))],
where the expectation is with respect to the true (unknown) joint distribution of
(X, 7).

@ The risk is unknown, but we can compute the empirical risk:

Rn(f) = %ZL(yuf(xl))
i=1




The Bayes Classifier

@ What is the optimal classifier if the joint distribution (X, Y) were known?

@ The density g of X can be written as a mixture of K components
(corresponding to each of the classes):

g(x> = Z ﬂ-kgk('x)a
k=1

where, fork =1,... K,
e P(Y = k) = m are the class probabilities,
@ gi(x) is the conditional density of X, given Y = «.

@ The Bayes classifier fgayes : x — {1,...,K} is the one with minimum risk:
R(f) =E[L(Y,f(X))] = Ex [Eyx[L(Y,f(X))|X]]

- /X E[L(Y.£(X))X = x| g(x)dx

@ The minimum risk attained by the Bayes classifier is called Bayes risk.
@ Minimizing E[L(Y,f(X))|X = x] separately for each x suffices.



The Bayes Classifier

@ Consider the 0-1 loss.
@ The risk simplifies to:

[ (Y. f(X))|X = x] =3 Lk, f(x))P(Y = kX = x)
k=1
1 - B(Y = f(x)|X = x)

@ The risk is minimized by choosing the class with the greatest posterior

probability:
foayes(¥) = argmaxIP’ (Y = k|X = x)
k=1,...,
_ mge(x)
= argmax —p———— = argmax mgk(x).

k=l K D mig(X) k=1, K

@ The functions x — m;gi(x) are called discriminant functions. The

discriminant function with maximum value determines the predicted class
of x.



The Bayes Classifier: Example

A simple two Gaussians example: Suppose X ~ N (uy, 1), where p; = —1 and
w2 = 1 and assume equal priors m; = m = 1/2.

gl(x)—\/lz?exp<(x—;l)2> and gg(x):\/lz?exp(—(x_21)2>.

. T 1 ifx<0,
Optimal classification is fgayes(x) = arg max migi(x) = L
k=1,....K 2 ifx>0.



The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?

conditional densities
0.
I I
conditional densities
le-11 le-04
I

1e-18

1le-25

0.
1e-32

Looking at density in a log-scale, optimal classification is to select class 2 if
and only if x € [0.34,2.16].



Plug-in Classification

@ The Bayes Classifier chooses the class with the greatest posterior
probability

fBayes(x) = argmax mgi(x).
k=1,...K

@ We know neither the conditional densities g, nor the class probabilities 7!
@ The plug-in classifier chooses the class

f(x) = arg max 7, gx (x),
k=1,...K

@ where we plugged in

e estimates 7, of myand k= 1,...,K and
o estimates g (x) of conditional densities,

@ Linear Discriminant Analysis is an example of plug-in classification.



Linear Discriminant Analysis
Linear Discriminant Analysis

@ LDA is the most well-known and simplest example of plug-in
classification.

@ Assume multivariate normal conditional density g, (x) for each class «:
X|Y =k NN(:LLka E)v
_ _ 1 _
() =27) P e (= ) TS ).

@ each class can have a different mean .,
o all classes share the same covariance X..

@ For an observation x, the k-th log-discriminant function is

l(x — i) ST (e — )

log mrgi(x) = ¢ + logmy — 3

The quantity (x — ) "' (x — 1) is the squared Mahalanobis distance
between x and .

e If ¥ =1, and m = +, LDA simply chooses the class k with the nearest (in
the Euclidean sense) class mean.



Linear Discriminant Analysis
Linear Discriminant Analysis

@ Expanding the term (x — 1) " 27" (x — ),
log migr(x) = ¢ + log my — % (1 7 e — 20 S +x T8 )
= +logm — %,ukTZ_'uk SEYTAD Vet
@ Setting a; = log(m) — Sp{ =" and b = =114, we obtain

log mgi(x) = ¢’ + ax + by x

i.e. a linear discriminant function in x.
@ Consider choosing class k over k':

a4+ by x > ap + bl x & a, +blx>0

where a, = a; — ap and b, = by — by.

@ The Bayes classifier thus partitions X into regions with the same class
predictions via separating hyperplanes.

@ The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.



Supervised Learning Linear Discriminant Analysis

Parameter Estimation

@ How to estimate the parameters of the LDA model?
@ We can achieve this by maximum likelihood (EM algorithm is not needed

here since the class variables y; are observed!).
@ Let ny = #{j : y; = k} be the number of observations in class .

O, ()=, %) =log p (i, 31y [, (a)ii=1, Zlogmlg\, xi)

K
=c+y > logm — % (1og\z| + =) 2 (g — Mk))

k=1 jiyj=k

~ s : :x
n I

J yi=k

ML estimates:

@ Note: the ML estimate of X is biased. For an unbiased estimate we need
to divide by n — K



Iris Dataset
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library (MASS)

data (iris)

##save class labels

ct <- unclass(iris$Species)
##pairwise plot
pairs(iris([,1:4],col=ct)
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Iris Dataset

Just focus on two predictor variables.

iris.data <- iris[,3:4]
plot (iris.data, col=ct,pch=20,cex=1.5,cex.lab=1.4)
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Iris Dataset

Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(0,8,0.02)
<- s5eq(0,3,0.02)
length (x)
<- length (y)
<- as.matrix (expand.grid(x,y),0)

N DB
A
I

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z) $class
contour (x,y,matrix(iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



Supervised Learning Linear Discriminant Analysis

Iris Dataset
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