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Supervised Learning Supervised Learning

Supervised Learning

Unsupervised learning:
To “extract structure” and postulate hypotheses about data generating
process from “unlabelled” observations x1, . . . , xn.
Visualize, summarize and compress data.

Supervised learning:
In addition to the observations of X, we have access to their response
variables / labels Y ∈ Y: we observe {(xi, yi)}n

i=1.
Types of supervised learning:

Classification: discrete responses, e.g. Y = {+1,−1} or {1, . . . ,K}.
Regression: a numerical value is observed and Y = R.

The goal is to accurately predict the response Y on new observations of X,
i.e., to learn a function f : Rp → Y, such that f (X) will be close to the true
response Y.
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Regression Example: Boston Housing

The original data are 506 observations on 13 variables X; medv is the
response variable Y.

crim per capita crime rate by town
zn proportion of residential land zoned for lots

over 25,000 sq.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river;

0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centers
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)^2 where B is the proportion of blacks by town
lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s

Supervised Learning Supervised Learning

Regression Example: Boston Housing

> str(X)
’data.frame’: 506 obs. of 13 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas : int 0 0 0 0 0 0 0 0 0 0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
$ rm : num 6.58 6.42 7.18 7.00 7.15 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
$ rad : int 1 2 2 3 3 3 5 5 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311 ...
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33 ...

> str(Y)
num[1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

Goal: predict median house price Y given 13 predictor variables X of a new
district.
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Classification Example: Lymphoma

We have gene expression measurements X of n = 62 patients for p = 4026
genes. For each patient, Y ∈ {0, 1} denotes one of two subtypes of cancer.
Goal: predict cancer subtype given gene expressions of a new patient.

> str(X)
’data.frame’: 62 obs. of 4026 variables:
$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868 ...
$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330 ...
$ Gene 3 : num -0.776 -0.588 0.409 -0.991 -1.517 ...
$ Gene 4 : num -0.474 -1.588 0.219 0.978 -1.604 ...
$ Gene 5 : num -1.896 -1.960 -1.695 -0.348 -0.595 ...
$ Gene 6 : num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 7 : num -1.875 -1.818 0.317 0.387 0.041 ...
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668 ...
$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458 ...
$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848 ...
$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541 ...
$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358 ...

> str(Y)
num [1:62] 0 0 0 1 0 0 1 0 0 0 ...

Supervised Learning Decision Theory

Loss function

Suppose we made a prediction Ŷ = f (X) ∈ Y based on observation of X.
How good is the prediction? We can use a loss function L : Y ×Y 7→ R+

to formalize the quality of the prediction.
Typical loss functions:

Misclassification loss (or 0-1 loss) for classification

L(Y, f (X)) =

{
0 f (X) = Y
1 f (X) 6= Y

.

Squared loss for regression

L(Y, f (X)) = (f (X)− Y)2 .

Many other choices are possible, e.g., weighted misclassification loss.
In classification, if estimated probabilities p̂(k) for each class k ∈ Y are
returned, log-likelihood loss (or log loss) L(Y, p̂) = − log p̂(Y) is often
used.

Supervised Learning Decision Theory

Risk

paired observations {(xi, yi)}n
i=1 viewed as i.i.d. realizations of a random

variable (X,Y) on X × Y with joint distribution PXY

Risk
For a given loss function L, the risk R of a learned function f is given by the
expected loss

R(f ) = EPXY [L(Y, f (X))] ,

where the expectation is with respect to the true (unknown) joint distribution of
(X,Y).

The risk is unknown, but we can compute the empirical risk:

Rn(f ) =
1
n

n∑

i=1

L(yi, f (xi)).

Supervised Learning Decision Theory

The Bayes Classifier

What is the optimal classifier if the joint distribution (X,Y) were known?
The density g of X can be written as a mixture of K components
(corresponding to each of the classes):

g(x) =

K∑

k=1

πkgk(x),

where, for k = 1, . . . ,K,
P(Y = k) = πk are the class probabilities,
gk(x) is the conditional density of X, given Y = k.

The Bayes classifier fBayes : x 7→ {1, . . . ,K} is the one with minimum risk:

R(f ) =E [L(Y, f (X))] = EX
[
EY|X[L(Y, f (X))|X]

]

=

∫

X
E [L(Y, f (X))|X = x] g(x)dx

The minimum risk attained by the Bayes classifier is called Bayes risk.
Minimizing E[L(Y, f (X))|X = x] separately for each x suffices.
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The Bayes Classifier

Consider the 0-1 loss.
The risk simplifies to:

E
[
L(Y, f (X))

∣∣X = x
]

=
K∑

k=1

L(k, f (x))P(Y = k|X = x)

=1− P(Y = f (x)|X = x)

The risk is minimized by choosing the class with the greatest posterior
probability:

fBayes(x) = arg max
k=1,...,K

P(Y = k|X = x)

= arg max
k=1,...,K

πkgk(x)∑K
j=1 πjgj(x)

= arg max
k=1,...,K

πkgk(x).

The functions x 7→ πkgk(x) are called discriminant functions. The
discriminant function with maximum value determines the predicted class
of x.

Supervised Learning Decision Theory

The Bayes Classifier: Example
A simple two Gaussians example: Suppose X ∼ N (µY , 1), where µ1 = −1 and
µ2 = 1 and assume equal priors π1 = π2 = 1/2.

g1(x) =
1√
2π

exp
(
− (x + 1)2

2

)
and g2(x) =

1√
2π

exp
(
− (x− 1)2

2

)
.
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Optimal classification is fBayes(x) = arg max
k=1,...,K

πkgk(x) =

{
1 if x < 0,
2 if x ≥ 0.

Supervised Learning Decision Theory

The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1
for class 1 but 1/3 for class 2?
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Looking at density in a log-scale, optimal classification is to select class 2 if
and only if x ∈ [0.34, 2.16].

Supervised Learning Decision Theory

Plug-in Classification

The Bayes Classifier chooses the class with the greatest posterior
probability

fBayes(x) = arg max
k=1,...,K

πkgk(x).

We know neither the conditional densities gk nor the class probabilities πk!
The plug-in classifier chooses the class

f (x) = arg max
k=1,...,K

π̂kĝk(x),

where we plugged in
estimates π̂k of πk and k = 1, . . . ,K and
estimates ĝk(x) of conditional densities,

Linear Discriminant Analysis is an example of plug-in classification.
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Linear Discriminant Analysis

LDA is the most well-known and simplest example of plug-in
classification.
Assume multivariate normal conditional density gk(x) for each class k:

X|Y = k ∼N (µk,Σ),

gk(x) =(2π)−p/2|Σ|−1/2 exp
(
−1

2
(x− µk)

>Σ−1(x− µk)

)
,

each class can have a different mean µk,
all classes share the same covariance Σ.

For an observation x, the k-th log-discriminant function is

logπkgk(x) = c + logπk −
1
2

(x− µk)
>Σ−1(x− µk)

The quantity (x− µk)
>Σ−1(x− µk) is the squared Mahalanobis distance

between x and µk.
If Σ = Ip and πk = 1

K , LDA simply chooses the class k with the nearest (in
the Euclidean sense) class mean.

Supervised Learning Linear Discriminant Analysis

Linear Discriminant Analysis

Expanding the term (x− µk)
>Σ−1(x− µk),

logπkgk(x) = c + logπk −
1
2
(
µ>k Σ−1µk − 2µ>k Σ−1x + x>Σ−1x

)

= c′ + logπk −
1
2
µ>k Σ−1µk + µ>k Σ−1x

Setting ak = log(πk)− 1
2µ
>
k Σ−1µk and bk = Σ−1µk, we obtain

logπkgk(x) = c′ + ak + b>k x

i.e. a linear discriminant function in x.
Consider choosing class k over k′:

ak + b>k x > ak′ + b>k′ x ⇔ a? + b>? x > 0

where a? = ak − ak′ and b? = bk − bk′ .
The Bayes classifier thus partitions X into regions with the same class
predictions via separating hyperplanes.
The Bayes classifier under these assumptions is more commonly known
as the LDA classifier.

Supervised Learning Linear Discriminant Analysis

Parameter Estimation

How to estimate the parameters of the LDA model?
We can achieve this by maximum likelihood (EM algorithm is not needed
here since the class variables yi are observed!).
Let nk = #{j : yj = k} be the number of observations in class k.

`(π, (µk)
K
k=1,Σ) = log p

(
(xi, yi)

n
i=1 |π, (µk)

K
k=1,Σ

)
=

n∑

i=1

logπyi gyi (xi)

=c +

K∑

k=1

∑

j:yj=k

logπk − 1
2

(
log |Σ|+ (xj − µk)

>Σ−1(xj − µk)
)

ML estimates:

π̂k =
nk

n
µ̂k =

1
nk

∑

j:yj=k

xj

Σ̂ =
1
n

K∑

k=1

∑

j:yj=k

(xj − µ̂k)(xj − µ̂k)
>

Note: the ML estimate of Σ is biased. For an unbiased estimate we need
to divide by n− K.

Supervised Learning Linear Discriminant Analysis

Iris Dataset

library(MASS)
data(iris)
##save class labels
ct <- unclass(iris$Species)
##pairwise plot
pairs(iris[,1:4],col=ct)
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Supervised Learning Linear Discriminant Analysis

Iris Dataset
Just focus on two predictor variables.

iris.data <- iris[,3:4]
plot(iris.data,col=ct,pch=20,cex=1.5,cex.lab=1.4)
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Supervised Learning Linear Discriminant Analysis

Iris Dataset

Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(0,8,0.02)
y <- seq(0,3,0.02)
m <- length(x)
n <- length(y)
z <- as.matrix(expand.grid(x,y),0)

##classes are 1,2 and 3, so set contours at 1.5 and 2.5
iris.ldp <- predict(iris.lda,z)$class
contour(x,y,matrix(iris.ldp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)

Supervised Learning Linear Discriminant Analysis

Iris Dataset
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