Supervised Learning

HT2015: SC4 Statistical Data Mining and Machine Learning

Dino Sejdinovic Department of Statistics Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

Unsupervised learning:

- To "extract structure" and postulate hypotheses about data generating process from "unlabelled" observations *x*₁,...,*x*_n.
- Visualize, summarize and compress data.

Supervised learning:

- In addition to the observations of *X*, we have access to their response variables / labels *Y* ∈ 𝔅: we observe {(*x_i*, *y_i*)}^{*n*}_{*i*=1}.
- Types of supervised learning:
 - Classification: discrete responses, e.g. $\mathcal{Y} = \{+1, -1\}$ or $\{1, \dots, K\}$.
 - Regression: a numerical value is observed and $\mathcal{Y} = \mathbb{R}$.

Supervised Learning

The goal is to accurately predict the response *Y* on new observations of *X*, i.e., to **learn a function** $f : \mathbb{R}^p \to \mathcal{Y}$, such that f(X) will be close to the true response *Y*.

Supervised Learning

5

Supervised Learning Supervised Learning

Regression Example: Boston Housing

The original data are 506 observations on 13 variables X; medv is the response variable Y.

crim	per	capita	crime	rate	by	town
------	-----	--------	-------	------	----	------

- zn proportion of residential land zoned for lots
 over 25,000 sq.ft
- indus proportion of non-retail business acres per town
- chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- nox nitric oxides concentration (parts per 10 million)
- rm average number of rooms per dwelling
- age proportion of owner-occupied units built prior to 1940
- dis weighted distances to five Boston employment centers
- rad index of accessibility to radial highways
- tax full-value property-tax rate per USD 10,000
- ptratio pupil-teacher ratio by town
- b 1000(B 0.63)^2 where B is the proportion of blacks by town
- lstat percentage of lower status of the population
- medv median value of owner-occupied homes in USD 1000's

Regression Example: Boston Housing

> str(X)

′ da	ata.fram	e ':	506 obs. of 13 variables:
\$	crim	: num	0.00632 0.02731 0.02729 0.03237 0.06905
\$	zn	: num	18 0 0 0 0 12.5 12.5 12.5 12.5
\$	indus	: num	2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87
\$	chas	: int	0 0 0 0 0 0 0 0 0
\$	nox	: num	0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.
\$	rm	: num	6.58 6.42 7.18 7.00 7.15
\$	age	: num	65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9
\$	dis	: num	4.09 4.97 4.97 6.06 6.06
\$	rad	: int	1 2 2 3 3 3 5 5 5 5
\$	tax	: num	296 242 242 222 222 222 311 311 311 311
\$	ptratio	: num	15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2
\$	black	: num	397 397 393 395 397
\$	lstat	: num	4.98 9.14 4.03 2.94 5.33

> str(Y)

num[1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

Goal: predict median house price Y given 13 predictor variables X of a new district.

Classification Example: Lymphoma

We have gene expression measurements *X* of n = 62 patients for p = 4026 genes. For each patient, $Y \in \{0, 1\}$ denotes one of two subtypes of cancer. Goal: predict cancer subtype given gene expressions of a new patient.

```
> str(X)
'data.frame': 62 obs. of 4026 variables:
$ Gene 1 : num -0.344 -1.188 0.520 -0.748 -0.868 ...
$ Gene 2 : num -0.953 -1.286 0.657 -1.328 -1.330 ...
$ Gene 3 : num -0.776 -0.588 0.409 -0.991 -1.517 ...
$ Gene 4 : num -0.474 -1.588 0.219 0.978 -1.604 ...
$ Gene 5
          : num -1.896 -1.960 -1.695 -0.348 -0.595 ...
          : num -2.075 -2.117 0.121 -0.800 0.651 ...
$ Gene 6
$ Gene 7
          : num -1.875 -1.818 0.317 0.387 0.041 ...
$ Gene 8 : num -1.539 -2.433 -0.337 -0.522 -0.668 ...
$ Gene 9 : num -0.604 -0.710 -1.269 -0.832 0.458 ...
$ Gene 10 : num -0.218 -0.487 -1.203 -0.919 -0.848 ...
$ Gene 11 : num -0.340 1.164 1.023 1.133 -0.541 ...
$ Gene 12 : num -0.531 0.488 -0.335 0.496 -0.358 ...
```

Supervised Learning

```
> str(Y)
num [1:62] 0 0 0 1 0 0 1 0 0 0 ...
```

Risk

paired observations {(x_i, y_i)}ⁿ_{i=1} viewed as i.i.d. realizations of a random variable (X, Y) on X × Y with joint distribution P_{XY}

Decision Theory

Risk

For a given loss function L, the **risk** R of a learned function f is given by the expected loss

$$R(f) = \mathbb{E}_{P_{XY}} \left[L(Y, f(X)) \right],$$

where the expectation is with respect to the true (unknown) joint distribution of (X, Y).

• The risk is unknown, but we can compute the **empirical risk**:

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i))$$

- Suppose we made a prediction $\hat{Y} = f(X) \in \mathcal{Y}$ based on observation of *X*.
- How good is the prediction? We can use a loss function L : 𝒴 × 𝒴 → ℝ⁺ to formalize the quality of the prediction.
- Typical loss functions:
 - Misclassification loss (or 0-1 loss) for classification

 $L(Y,f(X)) = \begin{cases} 0 & f(X) = Y \\ 1 & f(X) \neq Y \end{cases}.$

• Squared loss for regression

 $L(Y,f(X)) = (f(X) - Y)^2.$

Decision Theory

- Many other choices are possible, e.g., weighted misclassification loss.
- In classification, if estimated probabilities p̂(k) for each class k ∈ Y are returned, log-likelihood loss (or log loss) L(Y, p̂) = − log p̂(Y) is often used.

The Bayes Classifier

- What is the optimal classifier if the joint distribution (X, Y) were known?
- The density g of X can be written as a mixture of K components (corresponding to each of the classes):

Supervised Learning

$$g(x) = \sum_{k=1}^{K} \pi_k g_k(x),$$

where, for $k = 1, \ldots, K$,

- $\mathbb{P}(Y = k) = \pi_k$ are the class probabilities,
- $g_k(x)$ is the conditional density of *X*, given Y = k.
- The **Bayes classifier** $f_{Bayes} : x \mapsto \{1, \dots, K\}$ is the one with minimum risk:

$$R(f) = \mathbb{E} \left[L(Y, f(X)) \right] = \mathbb{E}_X \left[\mathbb{E}_{Y|X} [L(Y, f(X))|X] \right]$$
$$= \int_{\mathcal{X}} \mathbb{E} \left[L(Y, f(X)) | X = x \right] g(x) dx$$

- The minimum risk attained by the Bayes classifier is called **Bayes risk**.
- Minimizing $\mathbb{E}[L(Y, f(X))|X = x]$ separately for each *x* suffices.

Supervised Learning Decision Theory

The Bayes Classifier

- Consider the 0-1 loss.
- The risk simplifies to:

$$\mathbb{E}\Big[L(Y,f(X))\big|X=x\Big] = \sum_{k=1}^{K} L(k,f(x))\mathbb{P}(Y=k|X=x)$$
$$=1 - \mathbb{P}(Y=f(x)|X=x)$$

 The risk is minimized by choosing the class with the greatest posterior probability:

$$f_{\mathsf{Bayes}}(x) = \arg\max_{k=1,\dots,K} \mathbb{P}(Y=k|X=x)$$

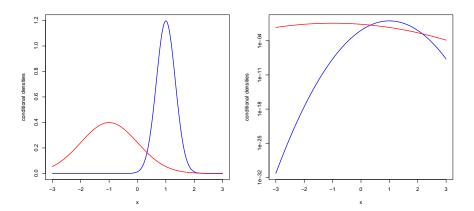
=
$$\arg\max_{k=1,\dots,K} \frac{\pi_k g_k(x)}{\sum_{i=1}^K \pi_i g_i(x)} = \arg\max_{k=1,\dots,K} \pi_k g_k(x).$$

 The functions x → π_kg_k(x) are called discriminant functions. The discriminant function with maximum value determines the predicted class of x.

Supervised Learning Decision Theory

The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1 for class 1 but 1/3 for class 2?

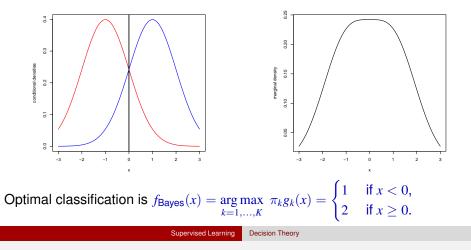


Looking at density in a log-scale, optimal classification is to select class 2 if and only if $x \in [0.34, 2.16]$.

The Bayes Classifier: Example

A simple two Gaussians example: Suppose $X \sim \mathcal{N}(\mu_Y, 1)$, where $\mu_1 = -1$ and $\mu_2 = 1$ and assume equal priors $\pi_1 = \pi_2 = 1/2$.

$$g_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x+1)^2}{2}\right)$$
 and $g_2(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-1)^2}{2}\right)$.



Plug-in Classification

 The Bayes Classifier chooses the class with the greatest posterior probability

$$f_{\mathsf{Bayes}}(x) = \underset{k=1,\ldots,K}{\operatorname{arg\,max}} \pi_k g_k(x).$$

- We know neither the conditional densities g_k nor the class probabilities π_k !
- The plug-in classifier chooses the class

 $f(x) = \underset{k=1,\ldots,K}{\arg\max} \hat{\pi}_k \hat{g}_k(x),$

- where we plugged in
 - estimates $\hat{\pi}_k$ of π_k and $k = 1, \ldots, K$ and
 - estimates $\hat{g}_k(x)$ of conditional densities,
- Linear Discriminant Analysis is an example of plug-in classification.

Supervised Learning Linear Discriminant Analysis

Linear Discriminant Analysis

- LDA is the most well-known and simplest example of plug-in classification.
- Assume multivariate normal conditional density $g_k(x)$ for each class k:

$$X|Y = k \sim \mathcal{N}(\mu_k, \Sigma),$$

$$g_k(x) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x-\mu_k)^\top \Sigma^{-1}(x-\mu_k)\right)$$

- each class can have a **different mean** μ_k ,
- all classes share the same covariance Σ .
- For an observation *x*, the *k*-th log-discriminant function is

$$\log \pi_k g_k(x) = c + \log \pi_k - \frac{1}{2} (x - \mu_k)^\top \Sigma^{-1} (x - \mu_k)^\top$$

The quantity $(x - \mu_k)^{\top} \Sigma^{-1} (x - \mu_k)$ is the squared **Mahalanobis distance** between *x* and μ_k .

• If $\Sigma = I_p$ and $\pi_k = \frac{1}{k}$, LDA simply chooses the class *k* with the nearest (in the Euclidean sense) class mean.

Supervised Learning Linear Discriminant Analysis

Parameter Estimation

- How to estimate the parameters of the LDA model?
- We can achieve this by maximum likelihood (EM algorithm is not needed here since the class variables *y_i* are observed!).
- Let $n_k = \#\{j : y_j = k\}$ be the number of observations in class *k*.

$$\ell(\pi, (\mu_k)_{k=1}^K, \Sigma) = \log p\left((x_i, y_i)_{i=1}^n | \pi, (\mu_k)_{k=1}^K, \Sigma\right) = \sum_{i=1}^n \log \pi_{y_i} g_{y_i}(x_i)$$
$$= c + \sum_{k=1}^K \sum_{j: y_j = k} \log \pi_k - \frac{1}{2} \left(\log |\Sigma| + (x_j - \mu_k)^\top \Sigma^{-1} (x_j - \mu_k)\right)$$

ML estimates:

τ

$$\hat{x}_k = \frac{n_k}{n} \qquad \qquad \hat{\mu}_k = \frac{1}{n_k} \sum_{j:y_j=k} x_j$$
$$\hat{\Sigma} = \frac{1}{n} \sum_{k=1}^K \sum_{j:y_j=k} (x_j - \hat{\mu}_k) (x_j - \hat{\mu}_k)^\top$$

 Note: the ML estimate of ∑ is biased. For an unbiased estimate we need to divide by n − K.

Linear Discriminant Analysis

• Expanding the term $(x - \mu_k)^{\top} \Sigma^{-1} (x - \mu_k)$,

$$\log \pi_k g_k(x) = c + \log \pi_k - \frac{1}{2} \left(\mu_k^\top \Sigma^{-1} \mu_k - 2\mu_k^\top \Sigma^{-1} x + x^\top \Sigma^{-1} x \right)$$

= $c' + \log \pi_k - \frac{1}{2} \mu_k^\top \Sigma^{-1} \mu_k + \mu_k^\top \Sigma^{-1} x$

• Setting $a_k = \log(\pi_k) - \frac{1}{2}\mu_k^\top \Sigma^{-1} \mu_k$ and $b_k = \Sigma^{-1} \mu_k$, we obtain

 $\log \pi_k g_k(x) = c' + a_k + b_k^\top x$

i.e. a **linear** discriminant function in *x*.

• Consider choosing class k over k':

$$a_k + b_k^\top x > a_{k'} + b_{k'}^\top x \qquad \Leftrightarrow \qquad a_\star + b_\star^\top x > 0$$

where $a_{\star} = a_k - a_{k'}$ and $b_{\star} = b_k - b_{k'}$.

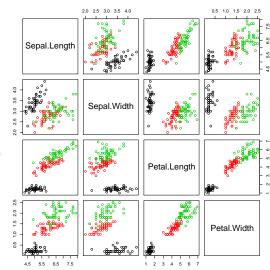
- The Bayes classifier thus partitions \mathcal{X} into regions with the same class predictions via **separating hyperplanes**.
- The Bayes classifier under these assumptions is more commonly known as the LDA classifier.

Supervised Learning

Linear Discriminant Analysis

Iris Dataset

library(MASS)
data(iris)
##save class labels
ct <- unclass(iris\$Species)
##pairwise plot
pairs(iris[,1:4],col=ct)</pre>

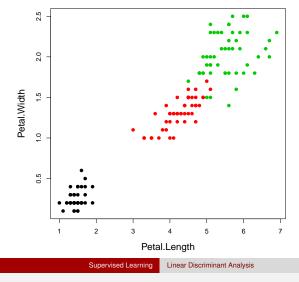


Supervised Learning Linear Discriminant Analysis

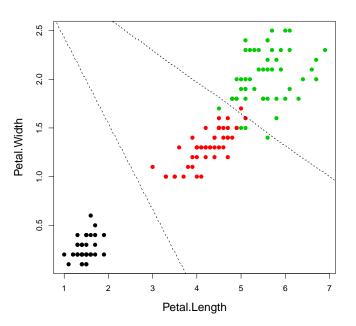
Iris Dataset

Just focus on two predictor variables.

iris.data <- iris[,3:4]
plot(iris.data,col=ct,pch=20,cex=1.5,cex.lab=1.4)</pre>



Iris Dataset



Supervised Learning Linear Discriminant Analysis

Iris Dataset

Computing and plotting the LDA boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)</pre>

##create a grid for our plotting surface x <- seq(0,8,0.02) y <- seq(0,3,0.02) m <- length(x) n <- length(y)</pre>

z <- as.matrix(expand.grid(x,y),0)</pre>