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Mixture Models

@ Mixture models suppose that our dataset X was created by sampling iid
from K distinct populations (called mixture components).

@ Typical samples in population k can be modelled using a distribution F,,,
with density f(x|x). For a concrete example, consider a Gaussian with
unknown mean , and known diagonal covariance 0?1,

_r 1
o) = (20~ exp (=5l pul).
@ Generative model: fori =1,2,...,n:
e First determine which population item i came from (independently):

Z; ~ Discrete(ny, . .., Tk) e, P(Zi=k) =m

where mixing proportions are m, > 0 for each k and >f_ m = 1.
o IfZ =k thenX; = (Xu,...,X;) " is sampled (independently) from
corresponding population distribution:
Xi|Z =k~ F,,

@ We observe that X; = x; for each i, and would like to learn about the
unknown parameters of the process.
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Mixture Models

@ Unknowns to learn given data are

o Parameters: 7,...,mx € [0,1], 1, ..., ux € R?, as well as
o Latent variables: z, ..., z..

@ The joint probability over all cluster indicator variables {Z;} are:
n K
1(zi=k
pz((z)i=) Hw HHW( :
i=1 k=1

@ The joint density at observations X; = x; given Z; = z; are:

pX((‘xl)l—lKZ - Zl 1—l HHf |,Uk 1( =)

i=1 k=1

@ So the joint probability/density
pxz((isz)iny) = [T TTCmo (el ) =0

"In this course we will treat probabilities and densities equivalently for notational simplicity. In
general, the quantity is a density with respect to the product base measure, where the base
measure is the counting measure for discrete variables and Lebesgue for continuous variables.



Mixture Models - Posterior Distribution

@ Suppose we know the parameters (m, i)k ;.
@ Z; is arandom variable and its posterior distribution given data set X is:

pZi=kx)  mf(xlm)

Qi :=p(Zi = klx;) = p(xi) Ele if (xi )

where the marginal probability of i-th instance is:

@ The posterior probability Qi of Z; = k is called the responsibility of
mixture component k for data point x;.

@ The posterior distribution softly partitions the dataset among the k
components.



Mixture Models - Maximum Likehood

@ How can we learn about the parameters 6 = (my, i )X_, from data?

@ Standard statistical methodology asks for the maximum likelihood
estimator (MLE).

@ The goal is to maximize the marginal probability of the data over the
parameters

O = argmaxp(X|6) = argmax HP xil (7, ) =1)
(ﬂ'k HA)k 1i=1

= argmax H Zwkf (x| o)

(T b)iy =1 k=1

= argmax Zlongkf (o] 1) -

(T m)fy =1 k=1

::Z((‘n’k,#k)kK:])



Mixture Models - Maximum Likehood

@ Marginal log-likelihood:

O((mas pa)izy) = log p(X| (i, )iy ZlogZka (oxi i)

@ The gradient w.r.t. p:

n

o (i )
Vi b((m, KZZE—Vklf,»
sl (T o) e=1) 2 Zle ot Gl " og f (i )

=D 0V logf (xilsu)-
i=1

o Difficult to solve, as Q. depends implicitly on fi.



Mixture Models - Maximum Likehood

Z Qikvpk Ing(xi‘/J’k) =0

i=1

@ What if we ignore the dependence of Q. on the parameters?
@ Taking the mixture of Gaussian with covariance o*I as example,

1
Zglkm( 2 1og(2r0?) ~ 3zl -

1< n
:7 Z Qu(xi — ) = — Z Ounxi — e (7=, Qi) | =0
S 7 =1

MML? Z:?:l Qixxi
=2
it Qi




Mixture Models - Maximum Likehood

@ The estimate is a weighted average of data points, where the estimated
mean of cluster k uses its responsibilities to data points as weights.

M7 _ > i Qi
ML? _ cim)
>, O

@ Makes sense: Suppose we knew that data point x; came from population
zi. Then Q;;, = 1 and Qy = 0 for k # z; and:

ML? _ Zi:z,:k Xi

M = S 1 =avg{x; : 5 =k}

@ Our best guess of the originating population is given by Q.



Mixture Models - Maximum Likehood

@ Gradient w.r.t. mixing proportion ; (including a Lagrange multiplier
A (X, m — 1) to enforce constraint 3, m, = 1).

2 <f((7Tk7Mk k=1) = Zk 1Tk — 1))
_ Z £ (il )

i=1 ] 17Tff(xt|/h)

—Z%*)\—O = ’/TkO(ZQlk

i=1

ShY - >y Qe
? P
Note: D> > 0u=>">" 0 aML? — Zuiz1 2k
k=1 i=1 i=1 k=1 n
N
=1

@ Again makes sense: the estimate is simply (our best guess of) the
proportion of data points coming from population k.



Mixture Models - The EM Algorithm

@ Putting all the derivations together, we get an iterative algorithm for
learning about the unknowns in the mixture model.

@ Start with some initial parameters (W,EO)7 M;EO))K

@ lterate forr=1,2,...:
o Expectation Step:

0" .= w8 Gl
ik T 1 1
z,ﬂ V)

o Maximization Step:

Yo 0 2 L O
0 _2iz i

(n _
Ty n (1)
" > i1 Qi

@ Will the algorithm converge?
@ What does it converge to?



Likelihood Surface for a Simple Example
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(left) n = 200 data points from a mixture of two 1D Gaussians with
m =m =05 0=5and u; = 10, u, = —10.
(right) Log likelihood surface ¢ (u1, 112), all the other parameters being

assumed known.



Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

An example with 3 clusters.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 1st E and M step.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians
After 2nd E and M step.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 3rd E and M step.

Iteration 3
)
® .‘. (V)
)
:. %o
o | ©
» B o8
w o
o.o % ©
8
§ °
® ®
T e ° o ® @
® )
LX)
Bay o ° °
2 - %° ° P
e o ® ® ®
o 4 o §
®oe ee ® ®
e®® o ® ®
T T T T
-5 0 5 10

data[,1]




Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 4th E and M step.
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Example: Mixture of 3 Gaussians

After 5th E and M step.
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Probabilistic Unsupervised Learning EM Algorithm
EM Algorithm

@ In a maximum likelihood framework, the objective function is the log
likelihood,

0(0) = log > mef (xil pue)
k=1

i=1
Direct maximization is not feasible.
@ Consider another objective function F (6, ¢) such that:

F(0,q) <) forall g, q,
max F(0,q) = £(0)
q

F(6,q) is a lower bound on the log likelihood.
@ We can construct an alternating maximization algorithm as follows:
Fort=1,2... until convergence:

g = argmax F(0'~Y q)
q

0" := argmax F (0, ¢\")
6



Probabilistic Unsupervised Learning EM Algorithm
EM Algorithm

@ The lower bound we use is called the variational free energy.
@ ¢ is a probability mass function for a distribution over z := (z;)?,.

F(0,q) =Eqllogp(X, 2|0) — log g(z)]

(Z L(z; = k) (log m; + logf(xi|ﬂk))> — log ‘I(Z)]

i=1 k=1

:2617(2) [

:Eq

n

Z 1(zi = k) (log m + logf(xfluk))> — log Cl(z)l

i=1 k=1



EM Algorithm - Solving for ¢

@ Gradient of 7 w.r.t ¢ (with Lagrange multiplier for > __g(z) = 1):

Vo F(0,q) ZZ k) (log 7 + log f (xi| 1)) — log g(z) — 1 — A
i=1 k=1

= (logm, + logf(xilu)) —logg(z) — 1= A =0
i=1

= q"( OCHWZJCX!“J
i=1

n

* H7 17Tzf xl|ﬂz fozlluz
= i iae
¢(2) = & g i) szwxlmk EP(Z\x )

@ Optimal ¢* is simply the posterior distribution for fixed 6.
@ Plugging in the optimal ¢* into the variational free energy,

Zlogzwx,luk = ((0)
i=1




EM Algorithm - Solving for 6

@ Setting derivative with respect to y to 0,

Z q(z Z k) Hi 1ogf(xi\uk)

i=1

= Z q(zi = )V Jog f (xil ) = 0
i=1

@ This equation can be solved quite easily. E.g., for mixture of Gaussians,

e i 4z = k)X
M = n -
Zi:l ‘I(Zi = k)

@ If it cannot be solved exactly, we can use gradient ascent algorithm:

=t oy q(zi = )V, log f(xi] ).
i=1

@ Similar derivation for optimal 7, as before.



Probabilistic Unsupervised Learning EM Algorithm
EM Algorithm

o Start with some initial parameters (r\", )% .
o lterateforr=1,2,...:
o Expectation Step:

AT
1 1
Z,KI V)

(1([) (zi =k) = Ep(zih,.,g(rfl))[l(a = k)]

o Maximization Step:

7_‘_(t) _ Z:l 1 q([)( i k) (1) :Z?:l CI(I) (Zi = k)xi
k n H S qD(zi =k)

@ Each step increases the log likelihood:

200y = F(OUD ¢y < F(OW, g1 < F(OD, gDy = £(o®).

@ Additional assumption, that V27 (0, ¢() are negative definite with
eigenvalues < —e < 0, implies that /) — #* where #* is a local MLE.



Notes on Probabilistic Approach and EM Algorithm

Some good things:
@ Guaranteed convergence to locally optimal parameters.

@ Formal reasoning of uncertainties, using both Bayes Theorem and
maximum likelihood theory.

@ Rich language of probability theory to express a wide range of generative
models, and straightforward derivation of algorithms for ML estimation.
Some bad things:
@ Can get stuck in local minima so multiple starts are recommended.
@ Slower and more expensive than K-means.

@ Choice of K still problematic, but rich array of methods for model
selection comes to rescue.



Flexible Gaussian Mixture Models

@ We can allow each cluster to have its own mean and covariance structure
allows greater flexibility in the model.
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Probabilistic PCA

@ A probabilistic model related to PCA has the following generative model:
fori=1,2,...,n:
o Letk < n,p be given.
o Let Y, be a (latent) k-dimensional normally distributed random variable with 0
mean and identity covariance:

Yi ~ N(0, L)

e We model the distribution of the ith data point given Y; as a p-dimensional

normal:
Xi ~ N(p+ LY, 0°1)

where the parameters are a vector ;. € R, a matrix L € R”** and o2 > 0.



Probabilistic PCA

PPCA latents
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Probabilistic PCA

PPCA latents
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Probabilistic PCA

PPCA latents
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Probabilistic PCA

PPCA latents
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_Pobabiistic Unsupenised Leaming BLZEEEIEEIER
Mixture of Probabilistic PCAs

@ We have learnt two types of unsupervised learning techniques:

e Dimensionality reduction, e.g. PCA, MDS, Isomap.
o Clustering, e.g. K-means, linkage and mixture models.

@ Probabilistic models allow us to construct more complex models from
simpler pieces.

@ Mixture of probabilistic PCAs allows both clustering and dimensionality
reduction at the same time.

Z; ~ Discrete(my, . .., Tk)
Y[ ~ N(Ovld)
Xi|Zi =k, Y = y; ~ N (pc + Lyi, 1)

@ Allows flexible modelling of covariance structure without using too many
parameters.

‘Ghahramani and Hinton 1996


http://mlg.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf

Further Reading—Unsupervised Learning

@ Hastie et al, Chapter 14.
@ James et al, Chapter 10.
@ Ripley, Chapter 9.

@ Tukey, John W. (1980). We need both exploratory and confirmatory. The
American Statistician 34 (1): 23-25.
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