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Mixture Models

@ Mixture models suppose that our dataset X was created by sampling iid
from K distinct populations (called mixture components).

@ Typical samples in population k£ can be modelled using a distribution F,,
with density f(x|u). For a concrete example, consider a Gaussian with
unknown mean ; and known diagonal covariance o1,

_r 1
) = ol exp (= el = )
@ Generative model: fori=1,2,...,n:
e First determine which population item i came from (independently):
Zi NDiSCI‘CtC(?Tl,...,ﬂ']() i.e., ]P)(Z,‘ :k) = Tk

where mixing proportions are m;, > 0 for each k and Zle T = L.
o IfZ =k, then X; = (Xu,...,X;,) " is sampled (independently) from
corresponding population distribution:
Xi|Zi =k ~ F,,

@ We observe that X; = x; for each i, and would like to learn about the
unknown parameters of the process.
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Mixture Models Mixture Models - Posterior Distribution
@ Unknowns to learn given data are o Suppose we know the parameters (1, ,Uk)kK:p
. Y4
: E:tr:m?:rrisa.bﬁg:.z.,:?{.i,[g oo, e € R, as well as @ Z; is a random variable and its posterior distribution given data set X is:
@ The joint probability over all cluster indicator \Zariables {Z;} are: O = p(Z = Klxi) = p(Zi=kx)  mf(xlm)
" ! o o ! B i - K . . .
((zi)i=1) Hﬂz HHW;%(Z’:]C) p) 2t mf (il k)

i=1 k=1
o . _ . where the marginal probability of i-th instance is:
@ The joint density at observations X; = x; g|ven Z; = z; are:

K

()i |(Z = 2)i) HHf i) <0 plu) =Y p(Z = j,x) Z (aly).

i=1k=1 =1

@ So the joint probability/density’ is:
n K . . . apnge
1= @ The posterior probability Q;. of Z; = k is called the responsibility of
px.z((xi,z1)ie1) HH mif (ilbax)) mixture component & for data point x;.
@ The posterior distribution softly partitions the dataset among the &
'In this course we will treat probabilities and densities equivalently for notational simplicity. In components.

general, the quantity is a density with respect to the product base measure, where the base
measure is the counting measure for discrete variables and Lebesgue for continuous variables.

i=1 k=1

Mixture Models - Maximum Likehood Mixture Models - Maximum Likehood

@ How can we learn about the parameters 6 = (m, )5, from data?

@ Standard statistical methodology asks for the maximum likelihood
estimator (MLE).

@ The goal is to maximize the marginal probability of the data over the ((mas )iy ) == log p(X| (ma, i)y ) Zlogzﬂkf xi puk)
parameters P

@ Marginal log-likelihood:

) @ The gradient w.r.t. y;:
O = argrgnaxp(X|9) = argmax Hp xi| Wkauk)k ) e gradient t

(ks Hk)k 1i=1

Vb)) = 3 Mv log f(xl 1)

K
= argmax Hzﬁkf (i ) =1 2t T (il )
(™o )ic =1 k=1 n
= OuVyu, logf (xilpu).
= argmax ZIngﬂkf (xi k) i=1
(momdic) =1 k=1

=) ) @ Difficult to solve, as Oy depends implicitly on .



Mixture Models - Maximum Likehood

Z iV log f(xi|pux) = 0

i=1

@ What if we ignore the dependence of Q. on the parameters?
@ Taking the mixture of Gaussian with covariance %I as example,

n
p 1
> 00 (5 ogtane®) — oz )

1 n 1 n )
:? Z Qik(xi - :u’k) = ; (Z Qik-xi - ,U/k (Zi:l Qik)) — O
=l i=1

MML? _ Z?:1 QirXi
ML? _ il TR
Z?: 1 Qik

Mixture Models - Maximum Likehood

@ Gradient w.r.t. mixing proportion 7 (including a Lagrange multiplier
A (X2, m — 1) to enforce constraint Y-, m = 1).

Vi (am, HOf) = NI - 1)

_ Z f (x| )

i=1 j l7r}f(x,|,u,)

_Z?TZ‘—/\_O = WxZQ,k

i=1 i=1

303 ShS >t Qi
i P
Note: ZZQik = ZZQik aib? — %
k=1 i=1 i=1 k=1
W_/
=1

@ Again makes sense: the estimate is simply (our best guess of) the
proportion of data points coming from population «.

Mixture Models - Maximum Likehood

@ The estimate is a weighted average of data points, where the estimated

mean of cluster k uses its responsibilities to data points as weights.

MML') Z:’:] Qirxi
% —_—
E?: 1 Qik

@ Makes sense: Suppose we knew that data point x; came from population

zi. Then Q;;, = 1 and Qy = 0 for k # z; and:

ML? Dk Xi
e == =avg{x; 1 z; = k}
Zi:zi:k 1

@ Our best guess of the originating population is given by Qj.

Mixture Models - The EM Algorithm

@ Putting all the derivations together, we get an iterative algorithm for
learning about the unknowns in the mixture model.

@ Start with some initial parameters (7T]E ),M;(CO));c -

o lterateforr=1,2,...:
o Expectation Step:

0 F Gl )

ik " 1 1
Z,"l {0 Gl )
o Maximization Step:
0 = S0 (0 _ 2 O
k
n Zz 1Q<t>

@ Will the algorithm converge?
@ What does it converge to?
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Likelihood Surface for a Simple Example
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(left) n = 200 data points from a mixture of two 1D Gaussians with
m =m =0.50=5and p; = 10, u, = —10.
(right) Log likelihood surface ¢ (111, 12), all the other parameters being

assumed known.
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Example: Mixture of 3 Gaussians
After 5th E and M step.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians
After 1st E and M step.
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Probabilistic Unsupervised Learning EM Algorithm

@ In a maximum likelihood framework, the objective function is the log
likelihood,

00) = log > mf (xil )
k=1

i=1
Direct maximization is not feasible.
@ Consider another objective function F(¢, ¢) such that:
F(0,q) < £09) for all 0, g,
max F(6,q) = £(0)
q
F(0,q) is a lower bound on the log likelihood.

@ We can construct an alternating maximization algorithm as follows:
Forr=1,2... until convergence:

g\ := argmax F(0'V q)
q

9(’) = argmax}—(aaq([))
0
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@ The lower bound we use is called the variational free energy.
@ ¢ is a probability mass function for a distribution over z := (z;)"_,.

F(0,q) =E4[logp(X,z|0) —log q(z)]

<A 1(zi = k) (log m + Ing(xiWk))) —log Q(Z)]

=Y a(z) { > D a=k (logm+logf(xi|uk))> —10gQ(Z)]

EM Algorithm - Solving for ¢

@ Setting derivative with respect to . to 0,

Zq Z (zi = KV Tog f (xil )

i=1

- Zq(z,- =k)V, logf(xi|) =0
i1

@ This equation can be solved quite easily. E.g., for mixture of Gaussians,

. 21 9(@ = k)x;
¢ Z?:l q(Zi = k)

@ If it cannot be solved exactly, we can use gradient ascent algorithm:
i =+ Y gz =k)V,, log f(xil).
i=1

@ Similar derivation for optimal 7, as before.

EM Algorithm - Solving for ¢

@ Gradient of F w.r.t ¢ (with Lagrange multiplier for >, ¢(z) = 1):

DR

i=1 k=1

= (log, + logf(xilp:)) —logg(z) =1 = A =0
i=1

VawF(0,9) k) (log mi + log f (xi| i) — logg(z) — 1 — A

z) x Hﬂ-zf(‘xi“’LZi)'
i=1
* [T maf (il ) o (xil p,) -
q \2) = = p(zilxi, 0).
") = S T mef Cali) szwmm = Lptaku0

@ Optimal ¢* is simply the posterior distribution for fixed 6.
@ Plugging in the optimal ¢* into the variational free energy,

Zlomecfxlluk ) =£(0)
i=1

Probabilistic Unsupervised Learning EM Algorithm

@ Start with some initial parameters (W,EO),M,(CO));C -
o lterateforr=1,2,...:
o Expectation Step:

t_l)f(xz‘ (t 1))

O — 1)
g (@ =k):=
POANE 1>f(xt|u(' D)

Ep(z,-\x,-,e(’*l)) [1(Zi = k)]

o Maximization Step:

0 _2i4”@ =k 0 _ X1 4@ = ki
! n YL@ =k)

@ Each step increases the log likelihood:

00Uy = F(OUD, 40y < F(OW, 40y < F(OW, gDy = £(61).

@ Additional assumption, that V2F (6, ¢() are negative definite with
eigenvalues < —e < 0, implies that #) — ¢* where 6* is a local MLE.



Notes on Probabilistic Approach and EM Algorithm Flexible Gaussian Mixture Models

@ We can allow each cluster to have its own mean and covariance structure

Some good things: allows greater flexibility in the model.

") Guaranteed Convergence tO Ioca”y 0pt|ma| parameters Different covariances Different, but diagonal covariances
@ Formal reasoning of uncertainties, using both Bayes Theorem and P .
maximum likelihood theory. o 8 IS
o ol
@ Rich language of probability theory to express a wide range of generative %f; A T AP
models, and straightforward derivation of algorithms for ML estimation. Ra 45!
Some bad things:
@ Can get stuck in local minima so multiple starts are recommended. Identical covariances Identical and spherical covariances
@ Slower and more expensive than K-means. 55 e,
@ Choice of K still problematic, but rich array of methods for model 26 et/
selection comes to rescue. & B’ @A
£ T e

Probabilistic PCA Probabilistic PCA

PPCA latents

@ A probabilistic model related to PCA has the following generative model:
fori=1,2,...,n:

o Letk < n,p be given. R
o Let Y; be a (latent) k-dimensional normally distributed random variable with 0 e
mean and identity covariance: ‘
y 'lgCA projection
d
Y; ~ N(0, Ik) e \
'O
’
'O
e We model the distribution of the ith data point given Y; as a p-dimensional '/
normal: o
X; ~ N (u+ LY;, 0°1) ol

where the parameters are a vector ;1 € R”, a matrix L € R”** and ¢* > 0. .
,Principal subspace
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Probabilistic PCA

PPCA latents
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Further Reading—Unsupervised Learning

@ Hastie et al, Chapter 14.
@ James et al, Chapter 10.
@ Ripley, Chapter 9.

@ Tukey, John W. (1980). We need both exploratory and confirmatory. The
American Statistician 34 (1): 23-25.

Mixture of Probabilistic PCAs

@ We have learnt two types of unsupervised learning techniques:

e Dimensionality reduction, e.g. PCA, MDS, Isomap.
o Clustering, e.g. K-means, linkage and mixture models.

@ Probabilistic models allow us to construct more complex models from
simpler pieces.

@ Mixture of probabilistic PCAs allows both clustering and dimensionality
reduction at the same time.

Z; ~ Discrete(my, ..., Tk)

Y; ~ N(0,1y)
Xi|Zi = k, Y; = yi ~ N (i + Ly;, 0°1,)

@ Allows flexible modelling of covariance structure without using too many
parameters.

Ghahramani and Hinton 1996



