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Clustering Types of Clustering

@ Many datasets consist of multiple heterogeneous subsets.

@ Cluster analysis: Given an unlabelled data, want algorithms that
automatically group the datapoints into coherent subsets/clusters.

@ Examples:

@ market segmentation .
o discovering communities in social networks © Model-based clustering:

e inferring population structures from genetic data e Each cluster is described using a probability model.
e image segmentation / edge detection @ Model-free clustering:

o Defined by similarity/dissimilarity among instances within clusters.
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Types of Clustering

@ Exclusive / Partition-based clustering methods:

@ Any instance belongs to one of K clusters.
e The number of clusters is usually fixed beforehand or investigated for various
values of K as part of the analysis.

@ Overlapping clustering methods:
@ An instance may fall into several clusters.

@ Probabilistic clustering methods:
@ An instance belongs to each cluster with a certain probability.
@ Hierarchical clustering methods:

@ Allocate points into clusters, then clusters into super-clusters forming a
hierarchy.

o Typically the hierarchy forms a binary tree (a dendrogram) where each
cluster has two “children” clusters.

K-means

W= Z Z l|xi — Mkﬂz = Z [[xi — Nc,”z

k=1 ieCy
where ¢; = kif and only if i € C;.

@ Given partition {C,}, we can find the optimal prototypes easily by
differentiating W with respect to p:

aﬂk_zz = Mk = ‘C|ZXI

i€Cy i€Cy

@ Given prototypes, we can easily find the optimal partition by assigning
each data point to the closest cluster prototype:

ci = argmin [|x; — pui3
k

But joint minimization over both is computationally difficult.

Clustering K-means

K-means

Partition-based methods seek to divide data points into a pre-assigned
number of clusters Cy,...,Cx where for all k, k' € {1,...,K},

K
Ua={1....n}.
k=1

CkC{l,...,l’l}, CGiNCy =0 Vk7ék/,

For each cluster, represent it using a prototype or cluster centroid ;.
We can measure the quality of a cluster with its within-cluster deviance

>l = puell3-

i€Cy

W(C, i) =

The overall quality of the clustering is given by the total within-cluster

deviance:
K

W= W(Cr m).

k=1

The overall objective is to choose both the cluster centroids and allocation of
points to minimize the objective function.

Clustering K-means

K-means
The K-means algorithm is a widely used method that returns a local optimum
of the objective function W, using iterative and alternating minimization.

@ Randomly initialize K cluster centroids 1, . . ., uk.

@ Cluster assignment: Foreachi=1,...,n, assign each x; to the cluster
with the nearest centroid,

¢; := argmin ||x; — Mng
k

Set Cy := {i: ¢; = k} for each k.
© Move centroids: Set 1, ..., ux to the averages of the new clusters:

Mk = |Ck| Z-xl

i€Cy

© Repeat steps 2-3 until convergence.
@ Return the partition {Cy,...,Cx} and means p, ..., ux.



K-means

@ The algorithm stops in a finite number of iterations. Between steps 2
and 3, W either stays constant or it decreases, this implies that we never
revisit the same partition. As there are only finitely many partitions, the

number of iterations cannot exceed this.

@ The K-means algorithm need not converge to global optimum.
K-means is a heuristic search algorithm so it can get stuck at suboptimal
configurations. The result depends on the starting configuration. Typically
perform a number of runs from different configurations, and pick the end
result with minimum W. Multiple initializations effective especially for

K < 10.
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Clustering K-means

K-means on Crabs

circle/triangle is gender, black/red is species
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K-means on Crabs

Looking at the Crabs data again.

library (MASS)
library (lattice)
data (crabs)

splom(~log(crabs[,4:8]),
col=as.numeric (crabs[,1]),
pch=as.numeric (crabsl[,2]),
main="circle/triangle is gender, black/red is species")

K-means on Crabs

Apply K-means with 2 clusters and plot results.

cl <- kmeans( log(crabs[,4:8]), 2, nstart=1, iter.max=10)

splom(~log(crabs[,4:8]),
col=clS$cluster+2,
main="blue/green is cluster finds big/small")



K-means on Crabs

Clustering

K-means

blue/green is cluster finds big/small
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K-means on Crabs

circle/triangle is gender, black/red is species
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Clustering K-means

blue/green is cluster
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Scatter Plot Matrix

Discovers gender difference...

Scatter Plot Matrix

Results depends crucially on sphering the data first.

K-means on Crabs

‘Whiten’ or ‘sphere’! the data using PCA.

pcp <- princomp( log(crabs[,4:8]) )
spc <- pcp$scores %$*x% diag(l/pcpS$Ssdev)
splom( ~spc[,1:31,
col=as.numeric (crabs[,1]),
pch=as.numeric (crabsl[,2]),

main="circle/triangle is gender, black/red is species")

And apply K-means again.

cl <- kmeans (spc, 2, nstart=1l, iter.max=20)

splom( ~spc[,1:31],

col=cl$cluster+2, main="blue/green is cluster")

" Apply a linear transformation so that covariance matrix is identity.

K-means on Crabs

Using 4 cluster centers.

circle/triangle is gender, black/red is species colors are clusters
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K-means Additional Comments

@ Good practice initialization. Randomly pick K training examples
(without replacement) and set uy, uo, . . ., ux €qual to those examples

@ Sensitivity to distance measure. Euclidean distance can be greatly
affected by measurement unit and by strong correlations. Can use
Mahalanobis distance instead:

e =l = /(= 3) T (x )

where M is positive semi-definite matrix, e.g. sample covariance.

@ Determination of K. The K-means objective will always improve with
larger number of clusters K. Determination of K requires an additional
regularization criterion. E.g., in DP-means?, use

K
W=l — 3 + AK

k=1ieCy

2DP-means papet.

Stochastic Optimization

@ Each iteration of K-means requires a pass through whole dataset. In
extremely large datasets, this can be computationally prohibitive.

@ Stochastic optimization: update cluster means after assigning each data

point to the closest cluster.
@ Repeat forr = 1,2, ... until satisfactory convergence:
@ Pick data item x; either randomly or in order.
@ Assign x; to the cluster with the nearest centroid,

cii= argkmin || — NkH;
© Update cluster centroid:
P = pe; + u(Xi — pie;)
where o, > 0 are step sizes.

@ Algorithm stochastically minimizes the objective function. Convergence
requires slowly decreasing step sizes:

oo oo
E oy = 00 E oz,Z < 00
=1 t=1

Other partition based methods

Other partition-based methods with related ideas:
e K-medoids?: requires cluster centroids y, to be an observation x;

@ K-medians: cluster centroids represented by a median in each
dimension

@ K-modes: cluster centroids represented by a mode estimated from a
cluster

3See also Affinity propagation.

Vector Quantization

@ A related algorithm developed in the signal processing literature for lossy
data compression.

@ X represented by n x p real numbers

@ Store instead:

o the codebook of K codewords 1, ..., ux (K x p real numbers)
e for each vector x; its cluster assignment ¢; ([log K| x n bits).

@ As with K-means, K must be specified. Increasing K improves the quality
of the compressed image but worsens the data compression rate, so
there is a clear tradeoft.

@ Some audio and video codecs use this method.

@ Stochastic optimization algorithm for K-means was originally developed
for VQ.



VQ Image Compression VQ Image Compression

Original image (24 bits/pixel, uncompressed size 1,402 kB) J Codebook length 1024 (1.11 bits/pixel, total size 88kB)

Each block of 3 x 3 pixels as a single observation x; € R°. Each block of 3 x 3 pixels as a single observation x; € R°.
VQ Image Compression VQ Image Compression
Codebook length 128 (0.78 bits/pixel, total size 50kB) ) Codebook length 16 (0.44 bits/pixel, total size 27kB)

Each block of 3 x 3 pixels as a single observation x; € R’. Each block of 3 x 3 pixels as a single observation x; € R°.



Hierarchical Clustering EU Indicators Data

6 Economic indicators for EU countries in 2011.

> eu<-read.csv (
"http://www.stats.ox.ac.uk/~sejdinov/teaching/data/eu_indicators.csv’,sep=" ')

@ Hierarchically structured data is ubiquitous (genus, species, subspecies, > eul1:15,]
individuals...) Countr%es abbr CPI UNE INP BOP PRC UN_perc
. . . . 1 Belgium BE 116.03 4.77 125.59 908.6 6716.5 -1.6
@ There are two general strategies for generating hierarchical clusters. 2 Bulgaria BG 141.20 7.31 102.39  27.8 1094.7 3.5
H inimi 3 CzechRep. Cz 116.20 4.88 119.01 -277.9 261l6.4 -0.6
B_oth_pr_oce_ed by seeking to minimize some measure of overall . o 119 50 t.03 B8.20 11564 9554 oL
dissimilarity. 5 Germany DE 111.60 4.63 111.30 499.4 6774.6  -1.3
: _ H 6 Estonia EE 135.08 9.71 111.50 153.4 2194.1 =7.7
° AQQ'S’mera"Ve/Bomm L_Jp_/Merglng 7 Ireland IE 106.80 10.20 111.20 -166.5 6525.1 2.0
o Divisive / Top-Down / Splitting 8 Greece EL 122.83 11.30 78.22 -764.1 5620.1 6.4
. . . 9 Spain ES 116.97 15.79 83.44 -280.8 4955.8 0.7
@ Higher level clusters are created by merging clusters at lower levels. This 10 Framce  FR 111.55 6.77 92.60 -337.1 6828.5  -0.9
process can easily be viewed by a tree/dendrogram. 11 Ttaly IT 115.00 5.05 87.80 -366.2 5996.6 0.5
12 Cyprus CY 116.44 5.14 86.91 -1090.6 5310.3 -0.4
hClUSt, agnes{cluster} 13 . Latv%a LV 144.47 12.11 110.39 42.3 1968.3 -3.6
14 Lithuania LT 135.08 11.47 114.50 -77.4 2130.6 -4.3
15 Luxembourg LU 118.19 3.14 85.51 2016.5 10051.6 -3.0
Data from Greenacre (2012)
EU Indicators Data Visualising Hierarchical Clustering
dat<-scale(eul[, 3:8]) ] > hc<-hclust (dist (dat)) > library (ape)
rownames (dat) <-eu$Countries > plot (hc,hang=-1) > plot (as.phylo(hc), type = "fan")
biplot (princomp (dat))
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Greece L o o IS
© o 3 f,” $ Gl
S w £ &
Spain o<
UN_perc <~ o
Portugal
91 e YR | e
3 Feaigice g o
g Bulgaria *
s} PRC
aniaungary T ecresyssriinaiEiEefnifes
L ania (S BEEEE3ETE5 I8R5 8358558555
N (SN B§T28GY BT gC8OT REEZT e E
] 3|0F\’,‘;'|f‘ia Belgium Luxembourg 2 z © %
Estonjp BOP
Fy
J T T T dist(dat)
-0.2 0.0 0.2 0.4 hclust (*, "complete")

Comp.1



Visualising Hierarchical Clustering

Levels in the dendrogram represent a dissimilarity between examples.

@ Tree dissimilarity dg = minimum height in the tree at which examples i
and j belong to the same cluster.

@ ultrametric (stronger than triangle) inequality:

dfy < max{d},dj;}.

@ Hierarchical clustering can be interpreted as an approximation of a given
dissimilarity d;; by an ultrametric dissimilarity.

Clustering Hierarchical Clustering

Measuring Dissimilarity Between Clusters

Cluster Distance

d24

(@)

d16

b)

d13+d14+d15+d23+d24+d26
3

Measuring Dissimilarity Between Clusters

To join clusters C; and C; into super-clusters, we need a way to measure the
dissimilarity D(C;, C;) between them.

Many such proposals though no concensus as to which is best.

(a) Single Linkage: elongated, loosely connected clusters

D(C;, Cj) = min (d(x,y)|x € Ci,y € C))
X,y

(b) Complete Linkage: compact clusters, relatively similar objects can
remain separated at high levels

D(C;, C;) = max (d(x,y)|x € Ci,y € C))
X,y

(c) Average Linkage: tries to balance the two above, but affected by the
scale of dissimilarities

D(C;, Cj) = avg,, (d(x,y)|x € Ci,y € C))

Hierarchical Clustering on Artificial Dataset
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Hierarchical Clustering on Artificial Dataset

dat=xclara #3000 x 2
library(cluster)

#plot the data
plot (dat, type="n")
text (dat, labels=row.names (dat) )

plot (agnes (dat, method="single"))

plot (agnes (dat, method="complete"))
plot (agnes (dat, method="average"))

Hierarchical Clustering on Artificial Dataset

Dendrogram of agnes(x = dat, method = "complete")
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Hierarchical Clustering on Artificial Dataset

Dendrogram of agnes(x = dat, method = "single")

Height

dat
Agglomerative Coefficient = 0.93

Hierarchical Clustering on Artificial Dataset

Dendrogram of agnes(x = dat, method = "average")
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Using Dendrograms

@ Different ways of measuring dissimilarity result in different trees.

@ Dendrograms are useful for getting a feel for the structure of
high-dimensional data though they don’t represent distances between
observations well.

@ Dendrograms show hierarchical clusters with respect to increasing values
of dissimilarity between clusters, cutting a dendrogram horizontally at a
particular height partitions the data into disjoint clusters which are
represented by the vertical lines it intersects. Cutting horizontally
effectively reveals the state of the clustering algorithm when the
dissimilarity value between clusters is no more than the value cut at.

@ Despite the simplicity of this idea and the above drawbacks, hierarchical
clustering methods provide users with interpretable dendrograms that
allow clusters in high-dimensional data to be better understood.



