Parametric vs Nonparametric models

HT2015: SC4 @ Parametric models have a fixed finite number of parameters, regardless

ot s : . of the dataset size. In the Bayesian setting, given the parameter vector 6,
Statistical Data Mlmng and Machine Leammg the predictions are independent of the data D.

. e p(x,0/D) = p(0|D)p(x(0)
Dino Sejdinovic

Department of Statistics Parameters can be thought of as a data summary: communication
Oxford channel flows from data to the predictions through the parameters.
Model-based learning (e.g., mixture of K multivariate normals)
http://www.stats.ox.ac.uk/~sejdinov/sdmml.html
@ Nonparametric models allow the number of “parameters” to grow with
the dataset size. Alternatively, predictions depend on the data (and the
hyperparameters).
Memory-based learning (e.g., kernel density estimation)

Dirichlet Process Dirichlet Process and a Posterior over Distributions
@ Givendata D = {x;}/, HLd- F, x; € R?, we put a prior DP(«, h) on F
@ We have seen that a conjugate prior over a probability mass function @ Posterior p(F|D) is DP(« + n, h), where h = ,H’jai? + ¢ hand
(my,...,mk) is a Dirichlet distribution Dir(«ay, . .., ak). Can we create a " S5, is the empirical distribution.
prior over probability distributions on R? o But how to reason about this posterior? Answer: sample from it!
@ Dirichlet process DP(a, ), « > 0 and H a probability distribution on R . _
A random probability distribution F is said to follow a Dirichlet process if : f)r[—
when restricted to any finite partition it has a Dirichlet distribution, i.e., for *
any partition A;, ..., Ax of R, M o JJ’[
(F(Ay),...,F(Ag)) ~ Dir (ah(Ay), ..., ah(Ak)) I J

Ay ‘ As ‘ As ‘ °c Ag

@ Stick-breaking construction allows us to draw from a Dirichlet process:

i.d.d.
o DraWS1,S2,... S h

@ Draw vy, v, ... & Beta(1, o) _
@ Setwi =vi,wo=wa(l —v),...,wy = L (1 —ve)... ]
Figure : top left: a draw from DP(10, A/(0, 1)); top right: resulting cdf; bottom left: draws from a

oo
Then Zé:l W€5Se ~ DP(a, h) posterior based on n = 25 observations from a A/ (5, 1) distribution (red); bottom right: Bayesian
posterior mean (blue), empirical cdf (black).

Example and Figure by L. Wasserman



Dirichlet Process Mixture Models

@ In mixture models for clustering, we had to pick the number of clusters K.
Can we automatically infer K from data?

@ Just use an infinite mixture model

6@ = > mepelf) Gaussian Processes

The following generative process defines an implicit prior on g:
@ Draw F ~ DP(a, )
@ Draw6,,...,0,|F "~ F
© Draw x;|0; ~ p(-|6))
@ Fis discrete and will get ties - ties form clusters.
@ Posterior distribution is more involved but can be sampled from'.

'Radford Neal, 2000: Markov Chain Sampling Methods for Dirichlet Process Mixture Models

Regression Different Flavours of Regression

@ We can model response y; as a noisy version of the underlying function f

“—_—————————__ o evaluated at input x;:
Yilf7Xi ~ N(f(xi)702)

Appropriate loss: L(y.f(x)) = (y — f(x))?
@ Frequentist Parametric approach: model f as fy for some parameter
vector 6. Fit by ML / ERM with squared loss (linear regression).

@ Frequentist Nonparametric approach: model f as the unknown
parameter taking values in an infinite-dimensional space of functions. Fit
f by regularized ML / ERM with squared loss (kernel ridge regression)

@ Bayesian Parametric approach: model f as fy for some parameter
vector #. Put a prior on # and compute a posterior p(6|D) (Bayesian linear
regression).

@ Bayesian Nonparametric approach: treat f as the random variable
taking values in an infinite-dimensional space of functions. Put a prior
over functions f € F, and compute a posterior p(f|D) (Gaussian Process
regression).
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@ We are given a dataset D = {(x;,yi)}l,, xi € R?, y; € R.
@ Regression: learn the underlying real-valued function f(x).



Bayesian Learning Gaussian Processes

@ Just work with the function values at ¢ prior p(f) encodes our prior
the inputs f = (f(x1),....f(x:)) " knowledge about the function.

@ What properties of the function can '
we incorporate?

e Multivariate normal prior on f:
f ~ N(0,K)
@ Use a kernel function k to define K:

Ky = k(xi,x;)

e Expect regression functions to be

smooth: If x and x’ are close by, then @ o1 ¢z o5 o& o5 o5 o

f(x) and £(x") have similar values, i.e. @ Model:
strongly correlated.
/ f~ N(Ov K)
FON o (O (k) k)
()~ () (3 &) S~ NG, )

In particular, want
k(x,x') & k(x,x) = k(x',x").

Gaussian Processes

@ Different kernels lead to different function characteristics.

- O = N W
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Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006.

Gaussian Processes

@ What does a multivariate normal prior mean?

@ Imagine x forms an infinitesimally dense grid of data space. Simulate
prior draws

f ~ N(0,K)

Plotfivs x;fori=1,...,n.

@ The corresponding prior over functions is called a Gaussian Process
(GP): any finite number of evaluations of which follow a Gaussian
distribution.
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http://www.gaussianprocess.org/

Gaussian Processes

fjx ~ N(0,K)
y[f ~ N (£,0%1)

@ Posterior distribution:
fly ~ N(K(K + ¢°I) 'y, K — K(K + ¢°1)"'K)

@ Posterior predictive distribution: Suppose x’ is a test set. We can extend
our model to include the function values f’ at the test set:

f ’ 0 Kxx Kxx’
() =2 ((0)- (22 &22)
yif ~ N (£, 0%0)

where Ky is matrix with (i, j)-th entry k(x;, x}).
@ Some manipulation of multivariate normals gives:

f,|y ~ N (KX/X(KXX + 0'21)_1)’, Kx’x’ - Kx’x(Kxx + 0'21)_1Kxx/)



Gaussian Processes GP regression demo

http://www.tmpl.fi/gp/

@ A whirlwind journey through data mining and machine learning
techniques:

o Unsupervised learning: PCA, MDS, Isomap, Hierarchical clustering,
K-means, mixture modelling, EM algorithm, Dirichlet process mixtures.

o Supervised learning: LDA, QDA, naive Bayes, logistic regression, SVMs,
kernel methods, kNN, deep neural networks, Gaussian processes, decision
trees, ensemble methods: random forests, bagging, stacking, dropout and
boosting.

e Conceptual frameworks: prediction, performance evaluation,
generalization, overfitting, regularization, model complexity, validation and
cross-validation, bias-variance tradeoff.

o Theory: decision theory, statistical learning theory, convex optimization,
Bayesian vs. frequentist learning, parametric vs non-parametric learning.

@ Further resources:

@ Machine Learning Summer Schools, videolectures.net.
@ Conferences: NIPS, ICML, UAI, AISTATS.
o Mailing list: ml-news.

Thank You!



