
HT2015: SC4
Statistical Data Mining and Machine Learning

Dino Sejdinovic
Department of Statistics

Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

Bayesian Learning Bayesian Nonparametrics

Parametric vs Nonparametric models

Parametric models have a fixed finite number of parameters, regardless
of the dataset size. In the Bayesian setting, given the parameter vector θ,
the predictions are independent of the data D.

p(x̃, θ|D) = p(θ|D)p(x̃|θ)

Parameters can be thought of as a data summary: communication
channel flows from data to the predictions through the parameters.
Model-based learning (e.g., mixture of K multivariate normals)

Nonparametric models allow the number of “parameters” to grow with
the dataset size. Alternatively, predictions depend on the data (and the
hyperparameters).
Memory-based learning (e.g., kernel density estimation)
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Dirichlet Process

We have seen that a conjugate prior over a probability mass function
(π1, . . . , πK) is a Dirichlet distribution Dir(α1, . . . , αK). Can we create a
prior over probability distributions on R?
Dirichlet process DP(α, h), α > 0 and H a probability distribution on R
A random probability distribution F is said to follow a Dirichlet process if
when restricted to any finite partition it has a Dirichlet distribution, i.e., for
any partition A1, . . . ,AK of R,
(F(A1), . . . ,F(AK)) ∼ Dir (αh(A1), . . . , αh(AK))

b b b
A1 A2 A3 AK

Stick-breaking construction allows us to draw from a Dirichlet process:
1 Draw s1, s2, . . .

i.i.d.∼ h
2 Draw v1, v2, . . .

i.i.d.∼ Beta(1, α)
3 Set w1 = v1,w2 = v2(1− v1), . . . ,wj = vj

∏j−1
`=1(1− v`) . . .

Then
∑∞
`=1 w`δs` ∼ DP(α, h)
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Dirichlet Process and a Posterior over Distributions

Given data D = {xi}n
i=1

i.i.d.∼ F, xi ∈ Rp, we put a prior DP(α, h) on F
Posterior p(F|D) is DP(α+ n, h̄), where h̄ = n

n+α F̂ + α
n+αh and

F̂ = 1
n

∑n
i=1 δxi is the empirical distribution.

But how to reason about this posterior? Answer: sample from it!

Figure : top left: a draw from DP(10,N (0, 1)); top right: resulting cdf; bottom left: draws from a
posterior based on n = 25 observations from a N (5, 1) distribution (red); bottom right: Bayesian
posterior mean (blue), empirical cdf (black).

Example and Figure by L. Wasserman
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Dirichlet Process Mixture Models

In mixture models for clustering, we had to pick the number of clusters K.
Can we automatically infer K from data?
Just use an infinite mixture model

g(x) =

∞∑

k=1

πkp(x|θk)

The following generative process defines an implicit prior on g:
1 Draw F ∼ DP(α, h)
2 Draw θ1, . . . , θn|F i.i.d.∼ F
3 Draw xi|θi ∼ p(·|θi)

F is discrete and will get ties - ties form clusters.
Posterior distribution is more involved but can be sampled from1.

1Radford Neal, 2000: Markov Chain Sampling Methods for Dirichlet Process Mixture Models

Bayesian Learning Gaussian Processes

Gaussian Processes
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Regression
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We are given a dataset D = {(xi, yi)}n
i=1, xi ∈ Rp, yi ∈ R.

Regression: learn the underlying real-valued function f (x).
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Different Flavours of Regression

We can model response yi as a noisy version of the underlying function f
evaluated at input xi:

yi|f , xi ∼ N (f (xi), σ
2)

Appropriate loss: L(y, f (x)) = (y− f (x))2

Frequentist Parametric approach: model f as fθ for some parameter
vector θ. Fit θ by ML / ERM with squared loss (linear regression).
Frequentist Nonparametric approach: model f as the unknown
parameter taking values in an infinite-dimensional space of functions. Fit
f by regularized ML / ERM with squared loss (kernel ridge regression)
Bayesian Parametric approach: model f as fθ for some parameter
vector θ. Put a prior on θ and compute a posterior p(θ|D) (Bayesian linear
regression).
Bayesian Nonparametric approach: treat f as the random variable
taking values in an infinite-dimensional space of functions. Put a prior
over functions f ∈ F , and compute a posterior p(f |D) (Gaussian Process
regression).
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Just work with the function values at
the inputs f = (f (x1), . . . , f (xn))>

What properties of the function can
we incorporate?

Multivariate normal prior on f:

f ∼ N (0,K)

Use a kernel function k to define K:

Kij = k(xi, xj)

Expect regression functions to be
smooth: If x and x′ are close by, then
f (x) and f (x′) have similar values, i.e.
strongly correlated.

(
f (x)
f (x′)

)
∼ N

((
0
0

)
,

(
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

))

In particular, want
k(x, x′) ≈ k(x, x) = k(x′, x′).

The prior p(f) encodes our prior
knowledge about the function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

Model:

f ∼ N (0,K)

yi|fi ∼ N (fi, σ2)
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Gaussian Processes

What does a multivariate normal prior mean?
Imagine x forms an infinitesimally dense grid of data space. Simulate
prior draws

f ∼ N (0,K)

Plot fi vs xi for i = 1, . . . , n.
The corresponding prior over functions is called a Gaussian Process
(GP): any finite number of evaluations of which follow a Gaussian
distribution.
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http://www.gaussianprocess.org/
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Gaussian Processes

Different kernels lead to different function characteristics.

Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006.
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Gaussian Processes

f|x ∼ N (0,K)

y|f ∼ N (f, σ2I)

Posterior distribution:

f|y ∼ N (K(K + σ2I)−1y,K−K(K + σ2I)−1K)

Posterior predictive distribution: Suppose x′ is a test set. We can extend
our model to include the function values f′ at the test set:(

f
f′

)
|x, x′ ∼ N

((
0
0

)
,

(
Kxx Kxx′

Kx′x Kx′x′

))

y|f ∼ N (f, σ2I)

where Kxx′ is matrix with (i, j)-th entry k(xi, x′j).
Some manipulation of multivariate normals gives:

f′|y ∼ N
(
Kx′x(Kxx + σ2I)−1y,Kx′x′ −Kx′x(Kxx + σ2I)−1Kxx′

)
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Gaussian Processes
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Bayesian Learning Gaussian Processes

GP regression demo

http://www.tmpl.fi/gp/

Summary

A whirlwind journey through data mining and machine learning
techniques:

Unsupervised learning: PCA, MDS, Isomap, Hierarchical clustering,
K-means, mixture modelling, EM algorithm, Dirichlet process mixtures.
Supervised learning: LDA, QDA, naïve Bayes, logistic regression, SVMs,
kernel methods, kNN, deep neural networks, Gaussian processes, decision
trees, ensemble methods: random forests, bagging, stacking, dropout and
boosting.
Conceptual frameworks: prediction, performance evaluation,
generalization, overfitting, regularization, model complexity, validation and
cross-validation, bias-variance tradeoff.
Theory: decision theory, statistical learning theory, convex optimization,
Bayesian vs. frequentist learning, parametric vs non-parametric learning.

Further resources:
Machine Learning Summer Schools, videolectures.net.
Conferences: NIPS, ICML, UAI, AISTATS.
Mailing list: ml-news.

Thank You!


