Parametric vs Nonparametric models

HT2015: SC4 Statistical Data Mining and Machine Learning

Dino Sejdinovic Department of Statistics Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

 Parametric models have a fixed finite number of parameters, regardless of the dataset size. In the Bayesian setting, given the parameter vector θ , the predictions are independent of the data \mathcal{D} .

$p(\tilde{x}, \theta | \mathcal{D}) = p(\theta | \mathcal{D}) p(\tilde{x} | \theta)$

Parameters can be thought of as a data summary: communication channel flows from data to the predictions through the parameters. Model-based learning (e.g., mixture of K multivariate normals)

• Nonparametric models allow the number of "parameters" to grow with the dataset size. Alternatively, predictions depend on the data (and the hyperparameters). Memory-based learning (e.g., kernel density estimation)

Bavesian Learning Bayesian Nonparametrics

Dirichlet Process

- We have seen that a conjugate prior over a probability mass function (π_1, \ldots, π_K) is a Dirichlet distribution $\text{Dir}(\alpha_1, \ldots, \alpha_K)$. Can we create a prior over probability distributions on R?
- **Dirichlet process** $DP(\alpha, h)$, $\alpha > 0$ and *H* a probability distribution on \mathbb{R} A random probability distribution F is said to follow a Dirichlet process if when restricted to any finite partition it has a Dirichlet distribution, i.e., for any partition A_1, \ldots, A_K of \mathbb{R} ,

 $(F(A_1),\ldots,F(A_K)) \sim \mathsf{Dir}(\alpha h(A_1),\ldots,\alpha h(A_K))$

$$A_1 \qquad A_2 \qquad A_3 \qquad \bullet$$

• Stick-breaking construction allows us to draw from a Dirichlet process:

 A_K

O Draw $s_1, s_2, \ldots \overset{i.i.d.}{\sim} h$ 2 Draw $v_1, v_2, \ldots \overset{i.i.d.}{\sim} \text{Beta}(1, \alpha)$ **Set** $w_1 = v_1, w_2 = v_2(1 - v_1), \dots, w_j = v_j \prod_{\ell=1}^{j-1} (1 - v_\ell) \dots$ Then $\sum_{\ell=1}^{\infty} w_{\ell} \delta_{s_{\ell}} \sim \mathsf{DP}(\alpha, h)$

Dirichlet Process and a Posterior over Distributions

Bayesian Nonparametrics

- Given data $\mathcal{D} = \{x_i\}_{i=1}^n \stackrel{i.i.d.}{\sim} F, x_i \in \mathbb{R}^p$, we put a prior $\mathsf{DP}(\alpha, h)$ on F• Posterior $p(F|\mathcal{D})$ is $\mathsf{DP}(\alpha + n, \bar{h})$, where $\bar{h} = \frac{n}{n+\alpha}\hat{F} + \frac{\alpha}{n+\alpha}h$ and

Bayesian Learning

 $\hat{F} = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ is the empirical distribution. • But how to reason about this posterior? Answer: sample from it!

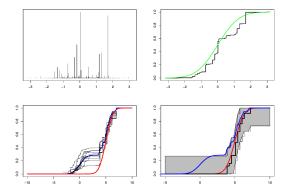


Figure : top left: a draw from DP(10, $\mathcal{N}(0, 1)$); top right: resulting cdf; bottom left: draws from a posterior based on n = 25 observations from a $\mathcal{N}(5, 1)$ distribution (red); bottom right: Bayesian posterior mean (blue), empirical cdf (black).

Dirichlet Process Mixture Models

- In mixture models for clustering, we had to pick the number of clusters *K*. Can we automatically infer *K* from data?
- Just use an infinite mixture model

$$g(x) = \sum_{k=1}^{\infty} \pi_k p(x| heta_k)$$

The following generative process defines an implicit prior on g:

1 Draw $F \sim \mathsf{DP}(\alpha, h)$

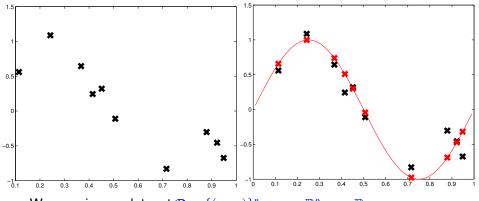
2 Draw
$$heta_1, \ldots, heta_n | F \stackrel{i.i.d.}{\sim} F$$

- $I Traw x_i | \theta_i \sim p(\cdot | \theta_i)$
- F is discrete and will get ties ties form clusters.
- Posterior distribution is more involved but can be sampled from¹.

¹Radford Neal, 2000: Markov Chain Sampling Methods for Dirichlet Process Mixture Models

Bayesian Learning Gaussian Processes

Regression



- We are given a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n, x_i \in \mathbb{R}^p, y_i \in \mathbb{R}.$
- Regression: learn the underlying real-valued function f(x).

Different Flavours of Regression

• We can model response y_i as a noisy version of the underlying function f evaluated at input x_i :

Bayesian Learning

 $y_i|f, x_i \sim \mathcal{N}(f(x_i), \sigma^2)$

Gaussian Processes

Appropriate loss: $L(y, f(x)) = (y - f(x))^2$

- Frequentist Parametric approach: model *f* as *f_θ* for some parameter vector *θ*. Fit *θ* by ML / ERM with squared loss (linear regression).
- Frequentist Nonparametric approach: model *f* as the unknown parameter taking values in an infinite-dimensional space of functions. Fit *f* by regularized ML / ERM with squared loss (kernel ridge regression)
- **Bayesian Parametric** approach: model f as f_{θ} for some parameter vector θ . Put a prior on θ and compute a posterior $p(\theta|D)$ (Bayesian linear regression).
- **Bayesian Nonparametric** approach: treat f as the random variable taking values in an infinite-dimensional space of functions. Put a prior over functions $f \in \mathcal{F}$, and compute a posterior $p(f|\mathcal{D})$ (Gaussian Process regression).

Gaussian Processes

Bayesian Learning Gaussian Processes

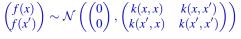
- Just work with the function values at the inputs $\mathbf{f} = (f(x_1), \dots, f(x_n))^\top$
- What properties of the function can we incorporate?
 - Multivariate normal prior on f:

$$\mathbf{f} \sim \mathcal{N}(0, \mathbf{K})$$

• Use a kernel function *k* to define **K**:

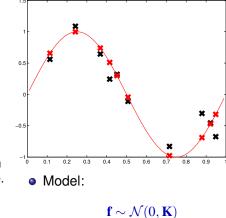
$$\mathbf{K}_{ij} = k(x_i, x_j)$$

• Expect regression functions to be smooth: If x and x' are close by, then f(x) and f(x') have similar values, i.e. strongly correlated.



In particular, want $k(x, x') \approx k(x, x) = k(x', x').$

The prior $p(\mathbf{f})$ encodes our prior knowledge about the function.



 $y_i | f_i \sim \mathcal{N}(f_i, \sigma^2)$

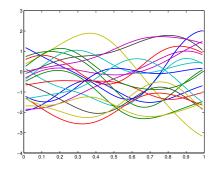
Gaussian Processes

- What does a multivariate normal prior mean?
- Imagine x forms an infinitesimally dense grid of data space. Simulate prior draws

$\mathbf{f} \sim \mathcal{N}(0, \mathbf{K})$

Plot f_i vs x_i for $i = 1, \ldots, n$.

• The corresponding prior over functions is called a **Gaussian Process** (GP): any finite number of evaluations of which follow a Gaussian distribution.



http://www.gaussianprocess.org/

Bayesian Learning Gaussian Processes

Gaussian Processes

 $\mathbf{f} | \mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$ $\mathbf{y} | \mathbf{f} \sim \mathcal{N}(\mathbf{f}, \sigma^2 I)$

• Posterior distribution:

$$\mathbf{f}|\mathbf{y} \sim \mathcal{N}(\mathbf{K}(\mathbf{K} + \sigma^2 I)^{-1}\mathbf{y}, \mathbf{K} - \mathbf{K}(\mathbf{K} + \sigma^2 I)^{-1}\mathbf{K})$$

 Posterior predictive distribution: Suppose x' is a test set. We can extend our model to include the function values f' at the test set:

$$\begin{pmatrix} \mathbf{f} \\ \mathbf{f}' \end{pmatrix} | \mathbf{x}, \mathbf{x}' \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{K}_{\mathbf{x}\mathbf{x}} & \mathbf{K}_{\mathbf{x}\mathbf{x}'} \\ \mathbf{K}_{\mathbf{x}'\mathbf{x}} & \mathbf{K}_{\mathbf{x}'\mathbf{x}'} \end{pmatrix} \right)$$
$$\mathbf{y} | \mathbf{f} \sim \mathcal{N}(\mathbf{f}, \sigma^2 I)$$

where $\mathbf{K}_{\mathbf{xx}'}$ is matrix with (i, j)-th entry $k(x_i, x'_j)$. • Some manipulation of multivariate normals gives:

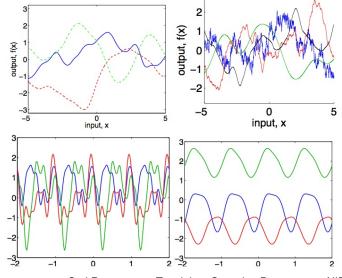
$$\mathbf{f}'|\mathbf{y} \sim \mathcal{N}\left(\mathbf{K}_{\mathbf{x}'\mathbf{x}}(\mathbf{K}_{\mathbf{x}\mathbf{x}} + \sigma^2 \mathbf{I})^{-1}\mathbf{y}, \mathbf{K}_{\mathbf{x}'\mathbf{x}'} - \mathbf{K}_{\mathbf{x}'\mathbf{x}}(\mathbf{K}_{\mathbf{x}\mathbf{x}} + \sigma^2 \mathbf{I})^{-1}\mathbf{K}_{\mathbf{x}\mathbf{x}'}\right)$$

Gaussian Processes

Different kernels lead to different function characteristics.

Bayesian Learning

Gaussian Processes

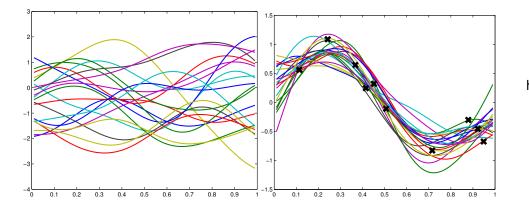


Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006.

Bayesian Learning Gaussian Processes

Gaussian Processes

GP regression demo



http://www.tmpl.fi/gp/

• A whirlwind journey through data mining and machine learning techniques:

Summary

- **Unsupervised learning**: PCA, MDS, Isomap, Hierarchical clustering, K-means, mixture modelling, EM algorithm, Dirichlet process mixtures.
- Supervised learning: LDA, QDA, naïve Bayes, logistic regression, SVMs, kernel methods, kNN, deep neural networks, Gaussian processes, decision trees, ensemble methods: random forests, bagging, stacking, dropout and boosting.
- **Conceptual frameworks**: prediction, performance evaluation, generalization, overfitting, regularization, model complexity, validation and cross-validation, bias-variance tradeoff.
- **Theory**: decision theory, statistical learning theory, convex optimization, Bayesian vs. frequentist learning, parametric vs non-parametric learning.

Further resources:

- Machine Learning Summer Schools, videolectures.net.
- Conferences: NIPS, ICML, UAI, AISTATS.
- Mailing list: ml-news.

Thank You!