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Bayesian Learning




Maximum Likelihood Principle

@ A generative model for training data D = {(x;,y;)},_, given a parameter
vector 6:

Vi~ Ty, k), X[y~ gy (x) = plxléy,)

@ k-th class conditional density assumed to have a parametric form for
gr(x) = p(x|¢x) and all parameters are given by
0= (7T1,...,7TK;¢1,...,¢K)

@ Generative process defines the likelihood function: the joint distribution
of all the observed data p(D|6) given a parameter vector 6 .

@ Process of generative learning consists of computing the MLE 6 of 6
based on D:

6 = argmax p(D|0)
=E)
@ We then use a plug-in approach to perform classification

f3(x) = argmax Pz(Y = k|X = x) = argmax M
ke{l,...K} ke{l, K} Dy Tp (x| )



The Bayesian Learning Framework

@ Being Bayesian: treat parameter vector ¢ as a random variable:
process of learning is then computation of the posterior distribution

p(0|D).
@ In addition to the likelihood p(D|6) need to specify a prior distribution
p(6).
@ Posterior distribution is then given by the Bayes Theorem:
p(DI0)p(9)
0|D) = —~—~—~
ploID) = =0
o Likelihood: p(D|0) e Posterior: p(6|D)
@ Prior: p(0) o Marginal likelihood: p(D) = [, p(DI|0)p(6)d6

@ Summarizing the posterior:

o Posterior mode: 8V"" = argmax, ., p(A|D) (maximum a posteriori).

o Posterior mean: §™" = E [6|D).
o Posterior variance: Var[f|D].



Simple Example: Coin Tosses

@ A simple example: We have a coin with probability ¢ of coming up heads.
Model coin tosses as i.i.d. Bernoullis, 1 =head, 0 =tail.

@ Estimate ¢ given a dataset D = {x;}!_, of tosses.
p(Dlp) = ¢" (1 —¢)"

@ Maximum Likelihood estimate:
ny

ML

@ Bayesian approach: treat the unknown parameter ¢ as a random
variable. Simple prior: ¢ ~ Uniform|[0, 1], i.e., p(¢) = 1 for ¢ € [0, 1].
Posterior distribution:

DIOpO) M (1 ¢"°1 n (1 gy n+1
ploim) = PRD0) _ 80— D)= [ 01— oo - 0D

Posterior is a Beta(n; + 1, + 1) distribution: ¢mean = %




Simple Example: Coin Tosses
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Posterior becomes behaves like the ML estimate as dataset grows and is
peaked at true value ¢* = .7.



Simple Example: Coin Tosses

@ All Bayesian reasoning is based on the posterior distribution.
;z;MAP _m

n

Posterior mode:

Posterior mean: ™" = ut

Posterior variance: Var[¢|D] = - Hq?”‘ea”( — pmean)

(1 — a)-credible regions: (1,r) C [0,1] s.t. [} p(0]D)d6 =1 — cv.

@ Consistency: Assuming that the true parameter value ¢* is given a
non-zero density under the prior, the posterior distribution concentrates
around the true value as n — oo.

@ Rate of convergence?

e 6 6 o



Simple Example: Coin Tosses

@ The posterior predictive distribution is the conditional distribution of
Xnt1 Qiven D = {x;}1;:

1
P D) = /O P51 |6, D)p($[D)de
1
- / P0ns1|6)p(BD)de

_ ((Emean)x,,H (1 . amean)l—an

@ We predict on new data by averaging the predictive distribution over the
posterior. Accounts for uncertainty about ¢.



Simple Example: Coin Tosses

@ In this example, the posterior distribution has a known analytic form and
is in the same Beta family as the prior: Uniform[0, 1] = Beta(1, 1).

@ An example of a conjugate prior.

@ A Beta distribution Beta(a, ) with parameters a, b > 0 is an exponential
family distribution with density

Pla+b) b—1
b) = ————¢*'(1 —
Pl b) = o 19
where I'(r) = [ u'~'e™"du is the gamma function.
@ If the prior is ¢ ~ Beta(a, b), then the posterior distribution is

(6D, a,b) =oc ¢*TM (1 — g)btmo!

so is Beta(a + ny, b + n).

@ Hyperparameters a and b are pseudo-counts, an imaginary initial
sample that reflects our prior beliefs about ¢.



Beta Distributions

—9




Bayesian Inference on the Categorical Distribution

@ Suppose we observe D = {y;}"_, withy; € {1,...,K}, and model them as
i.i.d. with pmf r = (m,...,7k):

K
p(ots) =T, = [Tt
k=1

with ne = Y7, 1(y; = k) and 7 > 0, Zk:l e = 1.
@ The conjugate prior on 7 is the Dirichlet distribution Dir(ay, . .., ag) with
parameters o, > 0, and density

K

Zk 1 ak
p(r) = H
[T T -
on the probability simplex {r : 7, > 0,3 = = 1}.
@ The posterior is also Dirichlet Dir(«; + ny,. .., ax + ng).
@ Posterior mean is
~mean o + nye

7Tk = - .
K
Zj:l aj+n;



Dirichlet Distributions
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(A) Support of the Dirichlet density for K = 3.
(B) Dirichlet density for oy = 10.
(C) Dirichlet density for o, = 0.1.




Naive Bayes

@ Return to the spam classification example with two-class naive Bayes

plxln) = H%' I

o Setm =" I{yi =k}, my =", 1(y; = k,x¥ = 1). MLE is:
Zi:y,-:kxlgj) %

k= —, byj=——""=—.
n ny ny

@ One problem: if the ¢-th word did not appear in documents labelled as
class k then ¢, = 0 and

P(Y = k|X = x with ¢-th entry equal to 1)
L0 N0

(Xﬁ'kﬁ (ngj) (1 _ékj)l =0
=1

i.e. we will never attribute a new document containing word ¢ to class &
(regardless of other words in it).



Bayesian Inference on Naive Bayes model

@ Under the Naive Bayes model, the joint distribution of labels
yi € {1,...,K} and data vectors x; € {0,1}" is

1(yi=k)
Hp(xiayt HH (WkH¢kj (bkj )
i=1

i=1 k=1

p

K
I Lo -
k=1 j=1

where my = >0 L(yi = k), my = > o, L(yi = k,x9 = 1).

@ For conjugate prior, we can use Dir((ay)k_,) for 7, and Beta(a, b) for ¢y
independently.

@ Because the likelihood factorizes, the posterior distribution over = and

(¢x;) also factorizes, and posterior for 7 is Dir((cy + nx)K_,), and for ¢y is
Beta(a + g, b+ ny — nkj).



Bayesian Inference on Naive Bayes model

@ Given D = {(x;, )}, want to predict a label y for a new document .
We can calculate

with
- o + ng
p(y=kD) = —%
do— Qutn
~(i):1 — % _ a—+ ny;
P = 1[5 = kD) =

@ Predicted class is

p( = kD)p(xly = k, D)
p(x|D)

p(y = kx, D) =

@ Compared to ML plug-in estimator, pseudocounts help to “regularize”
probabilities away from extreme values.



Bayesian Learning and Regularization

@ Consider a Bayesian approach to logistic regression: introduce a
multivariate normal prior for weight vector w € R”, and a uniform
(improper) prior for offset b € R. The prior density is:

) 1
plb.) = 1+ 2r0%) S exp (=515 w13

@ The posterior is
l n
p(b,w|D) o exp (—202|w|§ — > tog(1 + exp(—y(b + w%))))
i=1
@ The posterior mode is equivalent to minimizing the L,-regularized
empirical risk.
@ Regularized empirical risk minimization is (often) equivalent to having a
prior and finding a MAP estimate of the parameters.
@ [, regularization - multivariate normal prior.
e L, regularization - multivariate Laplace prior.

@ From a Bayesian perspective, the MAP parameters are just one way to
summarize the posterior distribution.



Bayesian Model Selection

@ A model M with a given set of parameters 6, consists of both the
likelihood p(D|0r¢) and the prior distribution p(6a4).

@ One example model would consist of all Gaussian mixtures with K

components and equal covariance (LDA): 6ipa = (1, . . ., Tk} 1y - - -, fik; 2),
along with a prior on 0; another would allow different covariances (QDA)
QQDA: (71'17...,71'1(;/1,1,...,/J,K;217...,EK).

@ The posterior distribution

p(D]Or, M)p(Oa| M)
p(DIM)

@ Marginal probability of the data under M (Bayesian model evidence):
POIM) = [ DI MOl )d0

p(DIM)
p(DIM’)

@ Compare models using their Bayes factors



Bayesian Occam’s Razor

@ Occam’s Razor: of two explanations adequate to explain the same set of
observations, the simpler should be preferred.

p(DIM) = /@ P(DIOr1, M)p(Bu| M)dB

@ Model evidence p(D|M) is the probability that a set of randomly selected
parameter values inside the model would generate dataset D.

@ Models that are too simple are unlikely to generate the observed dataset.

@ Models that are too complex can generate many possible dataset, so
again, they are unlikely to generate that particular dataset at random.

P(D|m)

\\\\\
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Bayesian Learning

Bayesian model comparison: Occam’s razor at work

Model Evidence

figures by M.Sahani




Bayesian Learning — Discussion

@ Use probability distributions to reason about uncertainties of parameters
(latent variables and parameters are treated in the same way).
@ Model consists of the likelihood function and the prior distribution on
parameters: allows to integrate prior beliefs and domain knowledge.
@ Bayesian computation — most posteriors are intractable, and posterior
needs to be approximated by:
@ Monte Carlo methods (MCMC and SMC).
e Variational methods (variational Bayes, belief propagation etc).
@ Prior usually has hyperparameters, i.e., p(¢) = p(6|v). How to choose ¢?
o Be Bayesian about v as well — choose a hyperprior p(1)) and compute
p(¢|D).

e Maximum Likelihood Il — find ¢ maximizing argmax ;. ¢, p(D[%).
p(D1) = [ p(DIO)p(1v)as

_ p(DlY)p(¥)



Bayesian Learning — Further Reading

@ Videolectures by Zoubin Ghahramani:
Bayesian Learning and Graphical models.

@ Gelman et al. Bayesian Data Analysis.
@ Kevin Murphy. Machine Learning: a Probabilistic Perspective.

@ E. T. Jaynes. Probability Theory: The Logic of Science.


http://videolectures.net/mlss05us_ghahramani_bl/
http://videolectures.net/mlss09uk_ghahramani_gm/
http://www.stat.columbia.edu/~gelman/book/
http://www.cs.ubc.ca/~murphyk/MLbook/
http://shawnslayton.com/open/Probability%20book/book.pdf?
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