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Maximum Likelihood Principle

@ A generative model for training data D = {(x;,y;)}\_, given a parameter

vector 6.
yi~ (T, mx), Xy~ gy,-(x) IP(X|¢y,»)

@ k-th class conditional density assumed to have a parametric form for

gr(x) = p(x|¢x) and all parameters are given by
9 - (7Tl7"'77rK;¢17"'7¢K)

@ Generative process defines the likelihood function: the joint distribution

of all the observed data p(D|#) given a parameter vector 6 .

@ Process of generative learning consists of computing the MLE 0 of 0

based on D:

6 = argmax p(D|6)
6€o
@ We then use a plug-in approach to perform classification

fz(x) = argmax P4(Y = k|X = x) = argmax M
ke{l,...,K} ke{l,...K} ZFI mp(x|¢;)
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The Bayesian Learning Framework

@ Being Bayesian: treat parameter vector ¢ as a random variable:
process of learning is then computation of the posterior distribution

p(0|D).
@ In addition to the likelihood p(D|6) need to specify a prior distribution
p(8).
@ Posterior distribution is then given by the Bayes Theorem:
p(DI0)p(0)
0|D) = —~—~=
poID) = 52
o Likelihood: p(D|¢) o Posterior: p(0|D)
e Prior: p(6) e Marginal likelihood: p(D) = [, p(D|0)p(6)d6

@ Summarizing the posterior:

o Posterior mode: 9" = argmax,_, p(6|D) (maximum a posteriori).

o Posterior mean: ™" = E [0|D].
o Posterior variance: Var[¢|D].



Simple Example: Coin Tosses

@ A simple example: We have a coin with probability ¢ of coming up heads.

Model coin tosses as i.i.d. Bernoullis, 1 =head, 0 =tail.
@ Estimate ¢ given a dataset D = {x;}_, of tosses.

p(Dl¢) = ¢" (1 —¢)"

with nj = 27:] ]l(xi :j)
@ Maximum Likelihood estimate:

oML T
oM = =

@ Bayesian approach: treat the unknown parameter ¢ as a random
variable. Simple prior: ¢ ~ Uniform|0, 1], i.e., p(¢) = 1 for ¢ € [0, 1].
Posterior distribution:

p(6ID) = ”“;'(‘2’;@ - "“'“p;g)"‘) L ) = / & (1= oyrap = L)
n+1

Posterior is a Beta(n; + 1,y + 1) distribution: gmean = 21
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Simple Example: Coin Tosses

@ All Bayesian reasoning is based on the posterior distribution.
(;MAP _m

n

o Posterior mode:
o Posterior mean: ¢ = "Lt
@ Posterior variance: Var[¢|D] = n—#@’“ean(l — gmean)
o (1 — a)-credible regions: (I,r) C [0,1] s.t. [ p(0|D)dd =1 — cv.
@ Consistency: Assuming that the true parameter value ¢* is given a
non-zero density under the prior, the posterior distribution concentrates
around the true value as n — oc.

@ Rate of convergence?

Simple Example: Coin Tosses

n=1, 0,20, ng=1
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Posterior becomes behaves like the ML estimate as dataset grows and is
peaked at true value ¢* = .7.
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Simple Example: Coin Tosses
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[}

@ The posterior predictive distribution is the conditional distribution of
X1 given D = {x;}7_;:

Pt D) = / P16, D)p(¢1D)dd
- /0 PGt |O)p(S[D)de

_ (amean)xwl (1 _ (Emean)l—.x”,

@ We predict on new data by averaging the predictive distribution over the
posterior. Accounts for uncertainty about ¢.



Simple Example: Coin Tosses

@ In this example, the posterior distribution has a known analytic form and
is in the same Beta family as the prior: Uniform[0, 1] = Beta(1, 1).

@ An example of a conjugate prior.

@ A Beta distribution Beta(a, b) with parameters a,b > 0 is an exponential
family distribution with density

p(la,b) = mw—‘(l gt

where T'(1) = [;° u'~'e™"du is the gamma function.
@ If the prior is ¢ ~ Beta(a, b), then the posterior distribution is

P(¢|D,a,b) =X ¢a+n]71(1 _ ¢)b+n071

so is Beta(a + ny,b + np).

@ Hyperparameters a and b are pseudo-counts, an imaginary initial
sample that reflects our prior beliefs about ¢.

Bayesian Inference on the Categorical Distribution

@ Suppose we observe D = {y;}!_, withy; € {1,...,K}, and model them as
i.i.d. with pmf 7 = (7, ..., 7g):

n K
p(Dlr) = [[m =[] =
i=1 k=1

with ny = > 1(y; = k) and m > 0, Zszl e = 1.
@ The conjugate prior on 7 is the Dirichlet distribution Dir(«, .. .
parameters «; > 0, and density
K
F(Zlf:l ) o]

P = Ty LT

on the probability simplex {7 : m, > 0,3 %, m = 1}.

s Oé]() with

@ The posterior is also Dirichlet Dir(«; + ny, . .

@ Posterior mean is

—~mean
T —

k

o + ng
K

.,aK—i-nK).

dim1 ot n

Beta Distributions

Dirichlet Distributions

(A) Support of the Dirichlet density for K = 3.
(B) Dirichlet density for oy, = 10.
(C) Dirichlet density for a;, = 0.1.




Naive Bayes

@ Return to the spam classification example with two-class naive Bayes

x, |¢k H d)k]

¢k] —x

o Setn, =" 1{y; =k}, my =S, 1(yi = k,x” = 1). MLE is:
(/)
- by = Tkt _ M,
n N ny

@ One problem: if the ¢-th word did not appear in documents labelled as
class k then ¢, = 0 and

P(Y = k|X = x with ¢-th entry equal to 1)
0

o Tk ﬁ (@i)xw (1 - égkj)l =0
j=1

i.e. we will never attribute a new document containing word /¢ to class k
(regardless of other words in it).

Bayesian Inference on Naive Bayes model

@ Given D = {(x;,y:)
We can calculate

_,, want to predict a label y for a new document x.

p(%,y = k|D) = p(y = kID)p(x[y = k, D)
with
- Qg+ ng
pG=kD)= —x——
Zle o +n
NO):1~:k,D: a+nkj
p(x v D) a+b+mn

@ Predicted class is

p(y = K[D)p(x]y = k, D)
p(D)

@ Compared to ML plug-in estimator, pseudocounts help to “regularize”
probabilities away from extreme values.

Bayesian Inference on Naive Bayes model

@ Under the Naive Bayes model, the joint distribution of labels
yi € {1,...,K} and data vectors x; € {0, 1} is

n
Hp(xiayl
i=1

where m = ST, 1 = k), g = 3o, 10i = ko = 1).

@ For conjugate prior, we can use Dir((ay)X_,) for m, and Beta(a, b) for ¢y
independently.

@ Because the likelihood factorizes, the posterior distribution over = and
(¢x;) also factorizes, and posterior for 7 is Dir((cy + n)5_,), and for ¢y is
Beta(a + nyj, b+n; — I’lkj).

Bayesian Learning and Regularization
@ Consider a Bayesian approach to logistic regression: introduce a

multivariate normal prior for weight vector w € R?, and a uniform
(improper) prior for offset b € R. The prior density is:

P 1
2\—2% IR ST
plb.) = 1+ @ro?) S exp =51l

1 n
S Iwll3 = > log(1 + exp(—yi(b + wa,«m)

i=1

@ The posterior is

p(b,w|D) x exp (—

@ The posterior mode is equivalent to minimizing the L,-regularized
empirical risk.
@ Regularized empirical risk minimization is (often) equivalent to having a
prior and finding a MAP estimate of the parameters.
e L, regularization - multivariate normal prior.
e L, regularization - multivariate Laplace prior.
@ From a Bayesian perspective, the MAP parameters are just one way to
summarize the posterior distribution.



Bayesian Model Selection

@ A model M with a given set of parameters 6, consists of both the
likelihood p(D|f ) and the prior distribution p(6 ).

@ One example model would consist of all Gaussian mixtures with K
components and equal covariance (LDA): 6ipa = (71, .. ., T&; 1, - -
along with a prior on 8; another would allow different covariances (QDA)
QQDA = (7T17...77TK;/“,...MuK;El,...,ZK).

@ The posterior distribution

p(D|0 s, M)p(O | M)
p(DIM)

@ Marginal probability of the data under M (Bayesian model evidence):
POIM) = [ PO Mpl02al )00

p(DIM)

@ Compare models using their Bayes factors S(DINT)
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Bayesian model comparison: Occam’s razor at work
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Bayesian Occam’s Razor

@ Occam’s Razor: of two explanations adequate to explain the same set of
observations, the simpler should be preferred.

p(DIM) = /@ P(DIrt, M)p(Ba| M)dB

@ Model evidence p(D| M) is the probability that a set of randomly selected
parameter values inside the model would generate dataset D.

@ Models that are too simple are unlikely to generate the observed dataset.

@ Models that are too complex can generate many possible dataset, so
again, they are unlikely to generate that particular dataset at random.
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Bayesian Learning — Discussion

73 iy S

@ Use probability distributions to reason about uncertainties of parameters
(latent variables and parameters are treated in the same way).
@ Model consists of the likelihood function and the prior distribution on
parameters: allows to integrate prior beliefs and domain knowledge.
@ Bayesian computation — most posteriors are intractable, and posterior
needs to be approximated by:
@ Monte Carlo methods (MCMC and SMC).
e Variational methods (variational Bayes, belief propagation etc).
@ Prior usually has hyperparameters, i.e., p(6) = p(6|y). How to choose ¢?
e Be Bayesian about ¢ as well — choose a hyperprior p(¢)) and compute

p(¢|D).

e Maximum Likelihood Il — find ) maximizing argmax ;. ¢, p(D|¢)).

(D) = / P(DI0)p(0]1)d6

_ p(D[Y)p(¥)

p(¢|D) (D)



Bayesian Learning — Further Reading

@ Videolectures by Zoubin Ghahramani:
Bayesian Learning and Graphical models.

@ Gelman et al. Bayesian Data Analysis.
@ Kevin Murphy. Machine Learning: a Probabilistic Perspective.
@ E. T. Jaynes. Probability Theory: The Logic of Science.



