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Random Forests and Extremely Randomized Trees

Random forests are similar to bagged decision trees with a few key
differences:

For each split point, the search is not over all p variables but just over mtry
randomly chosen ones (where e.g. mtry = bp/3c)
No pruning necessary. Trees can be grown until each node contains just
very few observations (1 or 5).
Random forests tend to produce better predictions than bagging.
Results often not sensitive to the only tuning parameter mtry.
Implemented in randomForest library.

Even more random methods, e.g. extremely randomized trees:
For each split point, sample mtry variables each with a random value to
split on, and pick the best one.
Often works even when mtry equals 1!

Often produce state-of-the-art results, and top performing methods in
machine learning competitions.

Breiman (2001), Geurts et al (2006)
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Table 1
Data set descriptions

Training Test
Data set Sample size Sample size Variables Classes

Cancer 699 — 9 2
Ionosphere 351 — 34 2
Diabetes 768 — 8 2
Glass 214 — 9 6
Soybean 683 — 35 19

Letters 15,000 5000 16 26
Satellite 4,435 2000 36 6
Shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
Digit 7,291 2,007 256 10

that in many states, the trials were anything but
speedy. It funded a study of the causes of the delay.
I visited many states and decided to do the anal-
ysis in Colorado, which had an excellent computer-
ized court data system. A wealth of information was
extracted and processed.

The dependent variable for each criminal case
was the time from arraignment to the time of sen-
tencing. All of the other information in the trial his-
tory were the predictor variables. A large decision
tree was grown, and I showed it on an overhead and
explained it to the assembled Colorado judges. One
of the splits was on District N which had a larger
delay time than the other districts. I refrained from
commenting on this. But as I walked out I heard one
judge say to another, “I knew those guys in District
N were dragging their feet.”

While trees rate an A+ on interpretability, they
are good, but not great, predictors. Give them, say,
a B on prediction.

9.1 Growing Forests for Prediction

Instead of a single tree predictor, grow a forest of
trees on the same data—say 50 or 100. If we are
classifying, put the new x down each tree in the for-
est and get a vote for the predicted class. Let the for-
est prediction be the class that gets the most votes.
There has been a lot of work in the last five years on
ways to grow the forest. All of the well-known meth-
ods grow the forest by perturbing the training set,
growing a tree on the perturbed training set, per-
turbing the training set again, growing another tree,
etc. Some familiar methods are bagging (Breiman,
1996b), boosting (Freund and Schapire, 1996), arc-
ing (Breiman, 1998), and additive logistic regression
(Friedman, Hastie and Tibshirani, 1998).

My preferred method to date is random forests. In
this approach successive decision trees are grown by
introducing a random element into their construc-
tion. For example, suppose there are 20 predictor

variables. At each node choose several of the 20 at
random to use to split the node. Or use a random
combination of a random selection of a few vari-
ables. This idea appears in Ho (1998), in Amit and
Geman (1997) and is developed in Breiman (1999).

9.2 Forests Compared to Trees

We compare the performance of single trees
(CART) to random forests on a number of small
and large data sets, mostly from the UCI repository
(ftp.ics.uci.edu/pub/MachineLearningDatabases). A
summary of the data sets is given in Table 1.

Table 2 compares the test set error of a single tree
to that of the forest. For the five smaller data sets
above the line, the test set error was estimated by
leaving out a random 10% of the data, then run-
ning CART and the forest on the other 90%. The
left-out 10% was run down the tree and the forest
and the error on this 10% computed for both. This
was repeated 100 times and the errors averaged.
The larger data sets below the line came with a
separate test set. People who have been in the clas-
sification field for a while find these increases in
accuracy startling. Some errors are halved. Others
are reduced by one-third. In regression, where the

Table 2
Test set misclassification error (%)

Data set Forest Single tree

Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6

Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle ×103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

From Breiman, Statistical Modelling: the two cultures, 2001.
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Comparison of 179 classifiers on 121 datasets. Random forests come top
with SVMs close behind.

From Delgado et al, 2014

Model Combination Random Forests

Looking at the Boston Housing data again (and at the help page for
randomForest first).

library(randomForest)
library(MASS)
data(Boston)

y <- Boston[,14]
x <- Boston[,1:13]

?randomForest

Model Combination Random Forests

> randomForest package:randomForest R Documentation

Classification and Regression with Random Forest

Description:
’randomForest’ implements Breiman’s random forest algorithm (based
on Breiman and Cutler’s original Fortran code) for classification
and regression. It can also be used in unsupervised mode for
assessing proximities among data points.

Usage:
## S3 method for class ’formula’:
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
## Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,

mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity=FALSE, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)

Model Combination Random Forests

Boston Housing data, again.
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> rf <- randomForest(x,y)
> print(rf)
>
Call:
randomForest(x = x, y = y)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.26161
% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot( predict(rf), y)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot( predict(rf,newdata=x), y)

Model Combination Random Forests

Out-of-bag error.

> plot( predict(rf), y)
> abline(c(0,1),col=2)
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predict(rf)

y

Training error.

> plot( predict(rf,newdata=x), y)
> abline(c(0,1),col=2)
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Model Combination Random Forests

Try mtry 2

> (rf <- randomForest(x,y,mtry=2))
Call:
randomForest(x = x, y = y, mtry = 2)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 12.17176
% Var explained: 85.58

Try mtry 4

> (rf <- randomForest(x,y,mtry=4))
Call:
randomForest(x = x, y = y, mtry = 4)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.01574
% Var explained: 88.14

Model Combination Random Forests

And mtry 8 and 10.

> (rf <- randomForest(x,y,mtry=8))
Call:
randomForest(x = x, y = y, mtry = 8)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 8

Mean of squared residuals: 9.552806
% Var explained: 88.68

> > (rf <- randomForest(x,y,mtry=10))
Call:
randomForest(x = x, y = y, mtry = 10)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 10

Mean of squared residuals: 9.774435
% Var explained: 88.42

mtry is the only real tuning parameter and typically performance not sensitive
to its choice (can use tuneRF to select it automatically).
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Variable “Importance”

Despite the better predictive performance, single trees seem to have an
edge over tree ensembles in terms of interpretability.
How to interpret a forest of trees ?

Idea: denote by ê the out-of bag estimate of the loss when using the original
data samples. For each variable k ∈ {1, . . . , p},

permute randomly the k-th predictor variable to generate a new set of
samples (X̃1,Y1), . . . , (X̃n,Yn), i.e., X̃(k)

i = X(k)
τ(i), for a permutation τ .

compute the out-of-bag estimate êk of the prediction error with these new
samples.

A measure of importance of variable k is then êk − ê, the increase in error rate
due to a random permutation of the k-th variable.

Model Combination Random Forests

Example for Boston Housing data.

rf <- randomForest(x,y,importance=TRUE)
varImpPlot(rf)
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Random Forests and Local Smoothing

Let P(x, xi) ∈ [0, 1] be the proportion of trees for which a vector x falls into
the same final leaf node as the training vector xi. P(x, xi) is a proximity
value, and tends to be large when x and xi are close.
If every leaf node contains the same number of training samples, the
prediction of random forests (in regression mode) at x is:

f̂ RF(x) =
∑n

i=1 P(x, xi)yi∑n
i=1 P(x, xi)

,

which is a local smoothing estimate.
If the nodes contain different number of original observations, P(x, xi) is a
weighted proportion of trees, where the weight of a tree is inversely
proportional to the number of samples in the leaf node containing x.
For classification, the prediction will be the weighted majority vote, where
again weights are proportional to the proximities P(x, xi).
Nearest neighbours and local smoothing techniques do not scale to very
large datasets, and approximate techniques for these often rely on tree
data structures, e.g. kd-trees, cover trees, ball trees. Random forests and
other randomized trees can be interpreted in this way.

Model Combination Ensemble Methods

Ensemble Methods
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Ensemble Methods

Bagging and random forests are examples of ensemble methods, where
predictions are based on an ensemble of many individual predictors.
Many other ensemble learning methods: boosting, stacking, mixture of
experts, Bayesian model combination, Bayesian model averaging etc.
Often gives significant boost to predictive performance.

Model Combination Ensemble Methods

Stacking

Also called stacked generalization.
Use the outputs of M learning algorithms as inputs to a combiner
learner.
Often, logistic regression is used as a combiner.

b

b

b

∑

w1

w2

w3

wM

s(.)

P̂(Y = 1|X = x)

1

b

w⊤q + b

q(1) = P̂
(1)(Y = 1|X = x)

q(M) = P̂
(M)(Y = 1|X = x)

q(2) = P̂
(2)(Y = 1|X = x)

q(3) = P̂
(3)(Y = 1|X = x)

Top entries for the $1M Netflix competition used a form of stacking Sill et al, 2009
Model Combination Ensemble Methods

Dropout Training of Neural Networks

Neural network with single layer of hidden
units:

Hidden unit activations:

hik = s


bh

k +

p∑

j=1

Wh
jkxij




Output probability:

ŷi = s

(
bo +

m∑

k=1

Wo
k hik

)

Large, overfitted, networks often have
co-adapted hidden units.
What each hidden unit learns may in fact
be useless, e.g. predicting the negation of
predictions from other units.
Can prevent co-adaptation by randomly
dropping out units from network.

xi1 xi2 xi3 xi4

hi1 hi2 hi3 hi4 hi5 hi6 hi7

ŷi

Hinton et al (2012).

Model Combination Ensemble Methods

Dropout Training of Neural Networks

Model as an ensemble of networks:

p(yi = 1|xi, θ) =
∑

b⊂{1,...,m}
q|b|(1− q)m−|b|p(yi = 1|xi, θ, drop out units b)

xi1 xi2 xi3 xi4

hi1 hi2 hi3 hi4

ŷi

xi1 xi2 xi3 xi4

hi1 hi3 hi5 hi7

ŷi

xi1 xi2 xi3 xi4

hi1 hi4 hi6

ŷi

xi1 xi2 xi3 xi4

hi3 hi4 hi5

ŷi

Weight-sharing among all networks: each network uses a subset of the
parameters of the full network (corresponding to the retained units).
Training by stochastic gradient descent: at each iteration a network is
sampled from ensemble, and its subset of parameters are updated.
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Dropout Training of Neural Networks
Classification of phonemes in speech.

Figure from Hinton et al.

Model Combination Boosting

Boosting

Model Combination Boosting

Boosting

Boosting is an iterative ensemble learning technique. At iteration t, the
predictor is (with 0 < ν < 1, typically small, say ν = 0.1):

f̂t(x) =
t∑

`=1

ν f̂`(x)

For regression, L2-boosting works as follows:
1 Fit a first function to the data {(xi, yi)}n

i=1 with base learner, yielding f̂1.
2 For t = 2, 3, . . . , T do:

1 Compute current residuals
ui = yi − f̂t−1(xi)

2 Fit the residuals {(xi, ui)}n
i=1, obtaining f̂t(x).

Boosting is a bias-reduction technique, as opposed to bagging and
dropout.
Boosting works well with simple base learners with low variance and high
bias, e.g. decision stumps.
Implemented in the mboost library.

Model Combination Boosting

Types of Boosting

L2-Boosting: the squared loss function in regression.

R(f ) =
1
n

n∑

i=1

(yi − f (xi))
2.

LogitBoost: logistic loss function (binary classification, yi ∈ {−1, 1}).

R(f ) =
1
n

n∑

i=1

log(1 + exp(−yif (xi))).

AdaBoost: exponential loss function (binary classification, yi ∈ {−1, 1}).

R(f ) =
1
n

n∑

i=1

exp(−yif (xi)).

Freund and Schapire (1995).
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Boosting
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Figure 1: A plot of the 0-1 loss function and surrogates corresponding to various practical classifiers.
These functions are plotted as a function of the margin α = yf(x). Note that a classification error
is made if and only if the margin is negative; thus the 0-1 loss is a step function that is equal to one
for negative values of the abscissa. The curve labeled “logistic” is the negative log likelihood, or
scaled deviance, under a logistic regression model; “hinge” is the piecewise-linear loss used in the
support vector machine; and “exponential” is the exponential loss used by the Adaboost algorithm.
The deviance is scaled so as to majorize the 0-1 loss; see Lemma 8.

Consistency results provide reassurance that optimizing a surrogate does not ultimately hinder

the search for a function that achieves the Bayes risk, and thus allow such a search to proceed within

the scope of computationally efficient algorithms. There is, however, an additional motivation for

working with surrogates of 0-1 loss beyond the computational imperative. Minimizing the sample

average of an appropriately-behaved loss function has a regularizing effect: it is possible to obtain

uniform upper bounds on the risk of a function that minimizes the empirical average of the loss φ,

even for classes that are so rich that no such upper bounds are possible for the minimizer of the

empirical average of the 0-1 loss. Indeed a number of such results have been obtained for function

classes with infinite VC-dimension (Bartlett, 1998, Shawe-Taylor et al., 1998), such as the function

3

Model Combination Boosting

blackboost: Boosting of Regression Trees

library(mboost)
n <- length(y) ## number of observations
Mvec <- 1:500 ## Mvec is vector with various stopping times
nM <- length(Mvec) ## number of possible stopping times
loss <- numeric(nM) ## loss contains the training error
losscv <- numeric(nM) ## losscv contains the validation error
for (mc in 1:nM){ ## loop over stopping times (not efficient)
yhat <- numeric(n) ## yhat are the fitted values
yhatcv <- numeric(n) ## yhatcv the cross-validated fitted values
M <- Mvec[mc] ## use M iterations
V <- 10 ## 10-fold cross validation

## indCV contains the ‘block’ in 1,...,10
## each observation falls into

indCV <- sample( rep(1:V,each=ceiling(n/V)), n)
for (cv in 1:V){ ## loop over all blocks

bb <- blackboost(y[indCV!=cv] ~ .,data=x[indCV!=cv,],
control=boost_control(mstop=M))

## predict the unused observations
yhatcv[indCV==cv] <- predict(bb,x[indCV==cv,])

}
losscv[mc] <- sqrt(mean( (y-yhatcv)^2 )) ## CV test error
bb <- blackboost(y ~ .,data=x,control=boost_control(mstop=M))
yhat <- predict(bb,x)
loss[mc] <- sqrt(mean( (y-yhat)^2 )) ## training error

}

Model Combination Boosting

blackboost: Boosting of Regression Trees
Plot of validation error in red and training error in black as functions of
iteration.
matplot( cbind(loss,losscv), type="p",lwd=2,col=c(1,2),lty=1)
abline(h= sqrt(mean(( predict(rf)-y)^2)),lwd=1,lty=2)
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RF & Boosting: Summary

Both RF and Boosting are tree ensembles.
Like RF, Boosting does not seem to overfit (the CV curve stays flat).
This is not quite true, though: consider limt→∞ f̂t(Xi). Needs early
stopping!
The stopping parameter T needs to be adjusted by either

cross-validation, which is computationally expensive or
model selection, which does not work very well for trees as base learners
(what are the degrees of freedom of a tree?)

Predictive performance is usually similar.
Properties of Boosting (and why it is successful) are rather well
understood (e.g. by bias reduction), but remain more of a mystery for RF.


