HT2015: SC4
Statistical Data Mining and Machine Learning

Dino Sejdinovic
Department of Statistics
Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

Random Forests and Extremely Randomized Trees

@ Random forests are similar to bagged decision trees with a few key
differences:

e For each split point, the search is not over all p variables but just over mtry
randomly chosen ones (where e.g. mitry = |p/3])

@ No pruning necessary. Trees can be grown until each node contains just
very few observations (1 or 5).

e Random forests tend to produce better predictions than bagging.

@ Results often not sensitive to the only tuning parameter mtry.

o Implemented in randomForest library.

@ Even more random methods, e.g. extremely randomized trees:
e For each split point, sample mtry variables each with a random value to
split on, and pick the best one.
e Often works even when mtry equals 1!
@ Often produce state-of-the-art results, and top performing methods in
machine learning competitions.

Breiman (2001), Geurts et al (2006)

Model Combination Random Forests

Random Forests

Random Forests

TABLE 2
Test set misclassification error (%)

Data set Forest Single tree
Breast cancer 2.9 59
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6
Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle x103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

From Breiman, Statistical Modelling: the two cultures, 2001.

[vocelComoinaion [CCEEUIEEEE I Rl o Forese
Random Forests

Comparison of 179 classifiers on 121 datasets. Random forests come top

with SVMs close behind. Looking at the Boston Housing data again (and at the help page for
| Rank ‘ Acc. ‘ K | Classifier randomForest first).
32.9 82.0 63.5 parRF_t (RF)
library (randomForest)
331 82.3 63.6 I'f_t (RF) library (MASS)
36.8 | 818 | 62.2 svim_C (SVM) data(Boston)
38.0 81.2 60.1 SVIIlPOly_t (SVl\r’I) y <- Boston[,14]
39.4 | 819 | 62.5 rforest R (RF) x <= Bostonf,1:13]
39.6 82.0 62.0 elm_kernel_m (NNET) o randomForest
40.3 | 814 | 61.1 svmRadialCost_t (SVM)
42,5 | 81.0 | 60.0 svmRadial t (SVM)
42.9 80.6 61.0 C5.0.t (BST)
44.1 79.4 60.5 avNNet_t (NNET)

From Delgado et al, 2014

Model Combination Random Forests Model Combination Random Forests

Boston Housing data, again.
> randomForest package:randomForest R Documentation

00 08 200 700 0 300 10 40

Classification and Regression with Random Forest . i:“:‘ [ﬂ E‘L:L] Eﬂ h D Ej D

Desc}fiptciion; t’ impl ts Brei ! d f t al ithm (b d EE\-DE@E
randomFores implements Breiman’s random forest algorithm ase

on Breiman and Cuiler’ s original Fortran code) for c?assification E . D . E % g

b |

ALE
L.
4l
k]

TR
{ CH
£y hid

&
MRl |l 35
and regression. It can also be used in unsupervised mode for EE DD D DD

assessing proximities among data points. . i;‘ . D @z
Peage: , ..] [][] (-]]
method for class ’formula’: " i - - - - —
randomForest (formula, data=NULL, ..., subset, na.action=na.fail) E] @ D E ﬂ m f
Default S3 method: ® : i :
randim;grest (x, ey=§TULL, xtest=NULL, ytest=NULL, ntree=500, h ﬂ E D m Ej @ E
mtry=if (lis.null(y) && !is.factor(y)) IR e e T I e e
(f1 (1(x)/3), l) 1 fl (t(1(x))), g
FoplacecTRUB, classwiNULL, outoif, strata, e ol] L1) ol i Bl 0][] Ll [E B
sampsize = if (replace) nrow (x) else ceiling(.632xnrow(x) lj . . D . . @ E E
desi = 1if (!is.null(y) !lis.factor(y)) 5 el 1, s
Iilr?lpilsfiz:ce=;ALSE,lsIZEalIﬁpﬂi;Lsé,s n;l:rliili,/ o : l D Eﬂ D . . E} E!
proximity=FALSE, oob.prox=proximity,
nori?v;tZs=TRUE, do.trac}e:FAL)S(;, o . @ @ D E
keep.forest=!is.null(y) && is.null (xtest), corr.bias=FALS @ . Eﬂ D . '

keep. inbag=FALSE,) 04 08 0 60 5 2

14 22

Eﬂ
k™

ﬁEEE
G & [
el 41

8

4

R

0

Model Combination Random Forests

> rf <- randomForest (x,Vy)
> print (rf)
>
Call:
randomForest (x = x, y = V)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.26161

o

% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot (predict(rf), y)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot (predict (rf,newdata=x), vy)

Model Combination Random Forests

Try mtry 2

> (rf <- randomForest (x,y,mtry=2))
Call:

randomForest (x = x, yv = vy, mtry = 2)

Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 2

Mean of squared residuals: 12.17176
% Var explained: 85.58

Try mtry 4

> (rf <- randomForest (x,y,mtry=4))
Call:

randomForest (x = x, yv = vy, mtry = 4)

Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.01574

o

% Var explained: 88.14

Model Combination Random Forests

Out-of-bag error. Training error.

> plot (predict(rf), v)
> abline(c(0,1),col=2)

> plot (predict (rf,newdata=x), vy)
> abline(c(0,1),col=2)

50
1

00 00 0o0o0®
0% o

10 20 30 40 10 20 30 40 50

predict(rf) predict(rf, newdata = x)

Model Combination Random Forests

Andmtry 8 and 10.

> (rf <- randomForest (x,y,mtry=8))
Call:
randomForest (x = x, y = vy, mtry = 8)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 8

Mean of squared residuals: 9.552806

)

% Var explained: 88.68

> > (rf <- randomForest (x,y,mtry=10))
Call:
randomForest (x = x, y = vy, mtry = 10)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 10

Mean of squared residuals: 9.774435
% Var explained: 88.42

mtry is the only real tuning parameter and typically performance not sensitive
to its choice (can use tuneRF to select it automatically).

LTI e
Variable “Importance” Example for Boston Housing data.

rf <- randomForest (x,y, importance=TRUE)
varImpPlot (rf)

@ Despite the better predictive performance, single trees seem to have an m
edge over tree ensembles in terms of interpretability. Istat
@ How to interpret a forest of trees ? ds
Idea: denote by ¢ the out-of bag estimate of the loss when using the original crim
data samples. For each variable k € {1,...,p}, piratio
@ permute randomly the k-th predictor variable to generate a new set of o
samples (X1,Y}),...,(X,,Y,), i.e.,)?i(k) = Xik(z) for a permutation 7. indus
@ compute the out-of-bag estimate &, of the prediction error with these new black
samples. .
A measure of importance of variable k is then ¢; — ¢, the increase in error rate n

due to a random permutation of the k-th variable. ‘ ‘ ‘ ‘ ‘

5 10 15 20 25
%IncMSE
Model Combination Random Forests Model Combination Ensemble Methods

Random Forests and Local Smoothing

@ LetP(x,x;) € [0, 1] be the proportion of trees for which a vector x falls into
the same final leaf node as the training vector x;. ‘B(x,x;) is a proximity
value, and tends to be large when x and x; are close.

@ If every leaf node contains the same number of training samples, the
prediction of random forests (in regression mode) at x is:

0y — St Bl Ensemble Methods

>oict Plx,xi)
which is a local smoothing estimate.

@ If the nodes contain different number of original observations, B(x, x;) is a
weighted proportion of trees, where the weight of a tree is inversely
proportional to the number of samples in the leaf node containing x.

@ For classification, the prediction will be the weighted majority vote, where
again weights are proportional to the proximities B (x, x;).

@ Nearest neighbours and local smoothing techniques do not scale to very
large datasets, and approximate techniques for these often rely on tree
data structures, e.g. kd-trees, cover trees, ball trees. Random forests and
other randomized trees can be interpreted in this way.

Ensemble Methods Stacking

@ Also called stacked generalization.

@ Use the outputs of M learning algorithms as inputs to a combiner
learner.

@ Bagging and random forests are examples of ensemble methods, where ® Often, logistic regression is used as a combiner.
predictions are based on an ensemble of many individual predictors.

@ Many other ensemble learning methods: boosting, stacking, mixture of o b
experts, Bayesian model combination, Bayesian model averaging etc. T

@ Often gives significant boost to predictive performance. @ :f’“”@xz-w

¢ =PO(Y < 1|X =)

M = PONTY =1|X = 2)

Top entries for the $1M Netflix competition used a form of stacking Sill et al, 2009

Ensemble Methods Model Combination Ensemble Methods
Dropout Training of Neural Networks Dropout Training of Neural Networks
@ Neural network with single layer of hidden
units:
o Hidden unit activations: @ Model as an ensemble of networks:

¢®l(1 = ¢)"~Plp(y; = 1]x;, 0, drop out units b)

14
hix = s (bf +> W_f’ﬂr‘j)
=1

@ Output probability:

" QO
Yi=s|b" + Z W hix A‘\«Q{J}/
) o[616)6

@ Large, overfitted, networks often have
co-adapted hidden units.

@ What each hidden unit learns may in fact
be useless, e.g. predicting the negation of
predictions from other units.

@ Can prevent co-adaptation by randomly
dropping out units from network.

@ Weight-sharing among all networks: each network uses a subset of the
parameters of the full network (corresponding to the retained units).

@ Training by stochastic gradient descent: at each iteration a network is
sampled from ensemble, and its subset of parameters are updated.

Hinton et al (2012).

Model Combination Ensemble Methods

Dropout Training of Neural Networks

Classification of phonemes in speech.

Test Error

46‘1

15 frames 3 layers 2000 units
15 frames 3 layers 4000 units
31 frames 3 layers 4000 units
31 frames 4 layers 4000 units

e
=

.
N

&
=]

e~

e [
finetuning without dropout

finetuning with dropout

Classification Error %
w w
& @

w
B

%
{
A
3
§

300 50 100 150 200
Epochs

Figure from Hinton et al.

Model Combination Boosting

Boosting

@ Boosting is an iterative ensemble learning technique. At iteration ¢, the
predictor is (with 0 < v < 1, typically small, say v = 0.1):
1
[0 =" vlx)
=1
@ For regression, L,-boosting works as follows:
@ Fit a first function to the data {(x;,y;)}._, with base learner, yielding §,.
Q Forr=2,3,...,Tdo:
@ Compute current residuals)
ui = yi — fr—1(xi)
@ Fit the residuals {(x;,u;)}}_,, obtaining F(x).
@ Boosting is a bias-reduction technique, as opposed to bagging and
dropout.
@ Boosting works well with simple base learners with low variance and high
bias, e.g. decision stumps.
@ Implemented in the mboost library.

Model Combination Boosting

Boosting

Model Combination Boosting

Types of Boosting
@ [,-Boosting: the squared loss function in regression.
1 n
R(f) == (i —f(x)).

n-
i=1

@ LogitBoost: logistic loss function (binary classification, y; € {—1,1}).

Rf) = > log(1 + exp(—yf (v).
i=1

@ AdaBoost: exponential loss function (binary classification, y; € {—1, 1}).

R = 5 exp(-if ().

Freund and Schapire (1995).

Model Combination Boosting

Boosting

~ - 5
— 01

© 4 \\ --- exponentia

A ---- hinge

S logistic

0 N B truncated quadratic

<+ - N

o - \\

N ~

o -

blackboost: Boosting of Regression Trees

Plot of validation error in red and training error in black as functions of
iteration.

matplot (cbind(loss, losscv), type="p",lwd=2,col=c(1l,2),1lty=1)
abline (h= sgrt (mean((predict (rf)-y)"2)),lwd=1l, lty=2)

LOSS
5

0 10 20 30 40 50 60

BOOSTING ITERATIONS

Model Combination Boosting

blackboost: Boosting of Regression Trees

library (mboost)

n <- length(y) ## number of observations

Mvec <- 1:500 ## Mvec is vector with various stopping times

nM <- length (Mvec) ## number of possible stopping times

loss <— numeric (nM) ## loss contains the training error

losscv <- numeric(nM) ## losscv contains the validation error

for (mc in 1:nM) { ## loop over stopping times (not efficient)
yhat <- numeric (n) ## yvhat are the fitted values
yhatcv <- numeric(n) ## yhatcv the cross-validated fitted values
M <- Mvec[mc] ## use M iterations
vV <= 10 ## 10-fold cross validation

indCV contains the ‘block’ in 1,...,10
each observation falls into
indCV <- sample(rep(l:V,each=ceiling(n/V)), n)
for (cv in 1:V){ ## loop over all blocks
bb <- blackboost (y[indCV!=cv] ~ .,data=x[indCV!=cv,],
control=boost_control (mstop=M))
predict the unused observations
yvhatcv[indCV==cv] <- predict (bb,x[indCV==cv,])
}
losscv[mc] <- sqgrt(mean((y-yhatcv)”"2)) ## CV test error
bb <- blackboost(y ~ .,data=x,control=boost_control (mstop=M))
vhat <- predict (bb, x)

loss[mc] <- sgrt(mean((y-yhat)”2)) ## training error

Model Combination Boosting

RF & Boosting: Summary

Both RF and Boosting are tree ensembles.

@ Like RF, Boosting does not seem to overfit (the CV curve stays flat).
This is not quite true, though: consider lim,_, - /;(X;). Needs early
stopping!

@ The stopping parameter T needs to be adjusted by either

e cross-validation, which is computationally expensive or
e model selection, which does not work very well for trees as base learners
(what are the degrees of freedom of a tree?)

@ Predictive performance is usually similar.

@ Properties of Boosting (and why it is successful) are rather well
understood (e.g. by bias reduction), but remain more of a mystery for RF.

