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Decision Trees




Classification and Regression Trees (CART)

@ Denote input domain by X and let the output domain be Y = {1,...,K}
(classification) or ) = R (regression).

@ A decision tree gives a partition of X into R disjoint sets (regions)
P ={Ri,...,Rr}, such that the fitted decision function is constant on
eachregion R, C X,j=1,...,R,i.e.

firee(x) = B;,Vx € R;.

@ Main strengths: easy to use, easy to interpret.

@ Often serve as a starting point for powerful model combination and
ensemble techniques: bagging, boosting (random forests).



odel Combination

| Decision Trees

Example: NHS Direct Self-help Guide
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Model Combination Decision Trees

Example: NHS Direct Self-help Guide

Are you developing a rash that does not
fade when you press a glass tumbler or finger

against it?

no

Are you suffering from a stiff neck,
headache and d9 you find the light
hurts your eyes nd/or you feeling
very sleepy and Fonfused

Emergency
("Dial 999")

no

Is there sneeging, a runny
nose, a mild temperature,
a sore throat,[and general
aches and pafns?

Emergency
("Dial 999") yes no

Are you feellng flushed,
hot and swefaty? Do you
have a high temperature
(over 38 C or 100.4 F), a
headache, gs well as a
runny nose pnd general
aches and phins?

Self-care

yes no

Self-care Self-care
(basic)



Decision Trees

@ A decision tree is a hierarchically organized structure, with each node
splitting the data space into regions based on value of a single feature
(attribute).

@ Some terminology:

Parent of a node c is the node with an arrow pointing into c.

Children of a node ¢ are those nodes which have node ¢ as a parent.

Root node is the top node of the tree; the only node without parents.

Leaf nodes are nodes which do not have children.

Stumps are trees with just the root node and two leaf nodes.

A K-ary tree is a tree where each node (except for leaf nodes) has K

children. Usually working with binary trees (K = 2).

e The depth of a tree is the maximal length of a path from the root node to a
leaf node.

@ Partition of X into R disjoint sets (Ry,...,Rg) is determined by the
leaves of the tree.
@ On each region R; the same decision/prediction is made: fiee(x) = f3; for

all x € R; - typically as a majority vote of the data items associated to that
leaf (classification) or as their mean (regression)



Example: Iris Data

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4.4 3.2 1.3 0.2 setosa
5.9 3.0 5.1 1.8 wvirginica
6.3 3.3 6.0 2.5 wvirginica
5.3 3.7 1.5 0.2 setosa
5.5 2.5 4.0 1.3 versicolor
6.1 2.9 4.7 1.4 versicolor
6.1 3.0 4.9 1.8 wvirginica
5.7 2.8 4.5 1.3 versicolor
5.4 3.0 4.5 1.5 versicolor
4.8 3.4 1.6 0.2 setosa
4.6 3.1 1.5 0.2 setosa
4.9 3.1 1.5 0.2 setosa
6.4 2.9 4.3 1.3 versicolor

Previously seen Iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for
50 flowers from each of 3 species of iris. The species are Iris setosa,
versicolor, and virginica.



Example: Iris Data

Decision tree Induced partitioning
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Partition of X into R disjoint sets (R, ..., Rg) is determined by the leaves of
the tree.



Decision functions based on trees

@ For regression problems, the parameterized function is
R
F) =" Bilpery;
j=1

Using squared loss, optimal parameters are:

A _ > iViler))
! Zi 1[X[€R/]

@ For classification problems, the estimated probability of each class k in
region R; is simply:
5 - Sil0i=Rler)
s Zi 1[x;ER,-]

@ These estimates can be regularized as well.



Partition Estimation

@ |deally, would like to find partition that achieves minimal risk: lowest
mean-squared error for prediction or misclassification rate for
classification.

@ Number of potential partitions is too large to search exhaustively.
@ ‘Greedy’ search heuristics for a good partition:

Start at root.

Determine best feature and value to split.
Recurse on children of node.

Stop at some point.
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Growth Heuristic for Regression Trees

@ Startwith R, = X =R~

@ For each featurej = 1,...,p, and for each value v € R that we can split
on:

@ Split data set:

Io={i:x? <} I = {i:x" >}

i el

@ Estimate parameters:

Ziel< Yi
|1<|

Ziel> Yi

B< = T

B> =

© Compute the quality of split, e.g., the square loss:

Z(yi - B<)’+ Z(Yi - B>)?

iel< iel>

@ Choose split, i.e., feature j and value v, with minimal loss.
@ Recurse on both children, with datasets (x;,y:)ic;. and (xi, y)ier- -



Boston Housing Data

crim per capita crime rate by town

zn proportion of residential land zoned for lots over 25,000 sqg.ft
indus proportion of non-retail business acres per town

chas Charles River dummy variable

nox nitric oxides concentration (parts per 10 million)

rm average number of rooms per dwelling

age proportion of owner-occupied units built prior to 1940

dis weighted distances to five Boston employment centres

rad index of accessibility to radial highways

tax full-value property-tax rate per USD 10,000

ptratio pupil-teacher ratio by town

b 1000(B - 0.63) "2 where B is the proportion of blacks by town
lstat percentage of lower status of the population

medv median value of owner-occupied homes in USD 1000’s

@ Predict median house value.



Decision Trees

Model Combination

Boston Housing Data

LOG( CRIME )

LOG( CRIME )



Boston Housing Data

@ Overall, the best first split is on variable rm, average number of rooms per

dwelling.

@ Final tree contains predictions in leaf nodes.

Istat>F14.4

crim>%6.992
11.98 17.14

dis>=[1.385

rm< 6.543
45.58
21.63 27.43

m< 6.941
T

rm< 7.437

crim>7.393 nox>=P.682¢
144 3335 219 459



Growth Heuristics for Classification Trees

@ For binary classification, the proportion of class 1 items in node
corresponding to region R; is given by

B' . Zil(yi = 1)1[x,e73;]
e Zi Ler))

@ A splitis good if both sides are more pure, i.e. le is closerto O or 1.
@ Different measures of node impurity:

o Misclassification error: 1 — max{f, 1 — 3 }.

e Gini impurity: 23, (1 — 8;1). A

o Entropy: —3;ilog 81 — (1 — ;1) log(1 — Bir).
@ Gini and entropy preferred: differentiable and produce purer nodes.
@ Extension to multi-class:

e Misclassification error: 1 — max; ;.

o Gini impurity: 35 | By (1 — Bi).

o Entropy: — 32X, Bilog Bi.
@ Stops once a node has insufficient number of items, or is pure.




Growth Heuristics for Classification Trees
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Model Combination [RIBENNNRIEE

Example: Leukemia Prediction
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Leukemia Dataset: Expression values of 3541 genes for 47 patients with
Leukemia ALL subtype (left) and 25 patients with AML (right).



Example: Leukemia Prediction

@ Tree found is of depth 2.
@ Very interpretable as it selects 3 out of 4088 genes and bases prediction
only on these.

X.2481<‘ 0.9985

X.172>5-0.3118 X.35<0.7172

0 1



Example: Pima Indians Diabetes Dataset

@ The subjects: women who were at least 21 years old, of Pima Indian
heritage living near Phoenix, Arizona.

@ Tested for diabetes according to World Health Organisation criteria.
@ Features:

number of pregnancies (npreg)
plasma glucose concentration (glu)
diastolic blood pressure (bp)

tricep skin fold thickness (skin)
body mass index(bbi)

diabetes pedigree function (ped)
age (age)



Example: Pima Indians Diabetes Dataset

>
>
>
>
>

library (rpart)

library (MASS)

data (Pima.tr)

rp <- rpart (Pima.tr[,8] ~ ., data=Pima.tr[,-8])
rp

n= 200

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)

2) glu< 123.5 109 15 No (0.86238532 0.13761468)
4) age< 28.5 74 4 No (0.94594595 0.05405405) =«
5) age>=28.5 35 11 No (0.68571429 0.31428571)
10) glu< 90 9 0 No (1.00000000 0.00000000) =
11) glu>=90 26 11 No (0.57692308 0.42307692)
22) bp>=68 19 6 No (0.68421053 0.31578947) =«
23) bp< 68 7 2 Yes (0.28571429 0.71428571) x*
3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)
6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222) *
13) glu>=166 8 2 Yes (0.25000000 0.75000000) =«
7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286)
14) bmi< 28.65 11 3 No (0.72727273 0.27272727) *
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) =«



Example: Pima Indians Diabetes Dataset

> plot (rp,margin=0.1); text (rp,use.n=T)
glu< 123.5
1

age< 28.5 ped< (.3095

70/4

13/6 2/5
glu</ 166 bmi< 28.65
NL YL
21/6 216 N Yes

8/3 7/38



Model Complexity

@ When should tree growing be stopped?

@ Will need to control complexity to prevent overfitting, and in general find
optimal tree size with best predictive performance.

@ A regularized objective
R°™(T) + C x size(T)

o Grow the tree from scratch and stop once the criterion objective starts to
increase.

o First grow the full tree and prune nodes (starting at leaves), until the
objective starts to increase.

@ Second option is preferred as the choice of tree is less sensitive to
“wrong” choices of split points and variables to split on in the first stages
of tree fitting.

@ Use cross-validation to determine optimal C.



Model Combination Decision Trees

Model Complexity

\

X-val Relative Error

rp <- rpart(Pima.tr[,8] ~ .,

plotcp (rp)
rp2 <- prune.rpart (rp,.029)
plot (rp2); text (rp2)

size of tree

1 2 3 4 5
I I I I I

12
I

1.0

0.8

0.6

T T T T T
Inf 0.19 0.11 0.066 0.029

0.012

data=Pima.tr[,-8],
control=rpart.control (xval=10)))

glu< 1235
f

No

ped<

.3095

## 10-fold CV

glud166

No Yes

No

bmi< 28.65



Model Combination Bagging

Bagging




Model Variability

glu< 123.5
i

ped< (.3095

gluq 166 bmi< 28.65

No Yes

@ Is the tree ‘stable’ if training data were slightly different?



Bootstrap for Classification Trees

@ The bootstrap is a way to assess the variance of estimators.
@ Fit multiple trees, each on a bootstrapped sample. This is a data set
obtained by sampling with replacement » times from training set.
> n <- nrow(Pima.tr)
> bss <- sample(l:n, n , replace=TRUE)
> sort (bss)
[1] 24456 79 10 11 12 12 12 12 13 13 15 15 20

> tree_boot <- rpart (Pima.tr[bss,8] ~ ., data=Pima.tr[bss,-8],
control=rpart.control (xval=10)) ## 10-fold CV

glu< 123.5 lu< 123.5

ped< 0.348

No

lu< 156.5

ped<[0.421
Yes

lu< 164.5 bmi< 28.65

No Yes No Yes



Bootstrap for Regression Trees

@ Regression for Boston housing data.
@ Predict median house prices based only on crime rate.
@ Use decision stump—the simplest tree with a single split at root.
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Bootstrap for Regression Trees
@ We fit a predictor f(x) on the data {(x;,y;)}",.

@ Assess the variance of f(x) by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators

P (x), b=1,...,B

@ Each tree f” is fitted on the resampled data (x;, y;)"_, where each j; is
chosen randomly from {1, ..., n} with replacement.
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Bagging

@ Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples.

Q@ Forb=1,...,B:
© Draw indices (ji,...,j.) fromthe set {1,...,n} with replacement.
@ Fit the model, and form predictor f*(x) based on bootstrap sample

(leayjl)a ) ()C.fxnvy//z)

@ Form bagged estimator



Bagging

MEDIAN HOUSE PRICE
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I
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20
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LOG( CRIME ) LOG( CRIME )

@ Bagging smooths out the drop in the estimate of median house prices.
@ Bagging reduces the variance of predictions, i.e. when taking
expectations over a random dataset D:

Ep[(f(x) = Ep[f(0))*] = Ep [(fag(x) — E[fag (1)])°]



Variance Reduction in Bagging

@ Suppose, in an ideal world, our estimators /> are each based on different
independent datasets of size n from the true joint distribution of X, Y.

@ The aggregated estimator would then be

1 B

Jag() = 5 D _f"(@) = F(x) = Ep[f(x)] as B — oo
b=1

where expectation is with respect to datasets of size n.
@ The squared-loss is:

Ep[(Y — fue(X))*[X = x] = Ep[(Y — f(X))*|X = ] + Ep[(F(X) — fue(X))*|X = ]
— Ep[(Y —f(X))’|X =x] as B — .

Aggregation reduces the squared loss by eliminating variance of f(x).

@ In bagging, variance reduction still applies at the cost of a small increase
in bias.

@ Bagging is most useful for flexible estimators with high variance (and
low bias).



Variance Reduction in Bagging

@ Deeper trees have higher complexity and variance.
@ Compare bagging trees of depth 1 and 3.

log(xScrim) log(xScrim)



Out-of-bag Test Error Estimation

@ How well does bagging to? Can we estimate generalization performance,
and tune hyperparameters?

@ Answer 1: cross-validation.
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@ Foreachv=1,...,V,

o fit fz,, on the training samples.
e predict on validation set.

@ Compute the CV error by averaging the loss across all test observations.



Bagging

Model Combination

Out-of-bag Test Error Estimation
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@ Answer 2: Out-of-bag test error estimation.



Bagging

Out-of-bag Test Error Estimation
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Bagging

Out-of-bag Test Error Estimation
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@ Idea: test on the “unused” data points in each bootstrap iteration to

estimate the test error.
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Out-of-bag Test Error Estimation

@ Foreachi=1,..., n, the out-of-bag sample is:

B; = {b : x; is not in training set} C {1,...

@ Construct the out-of-bag estimate at x;:

@ Out-of-bag risk:



Out-of-bag Test Error Estimation

We need |B,| to be reasonably large foralli = 1,... n.
The probability 7°°° of an observation NOT being included in a bootstrap
sample (ji,...,j,) (and hence being ‘out-of-bag’) is:

n

1 1

oob n— oo

:Il 1—- — -~ 0.367.
" i=1 < n> ¢

Hence E[|B;|] ~ 0.367B

In practice, number of bootstrap samples B is typically between 200 and
1000, meaning that the number |B;| of out-of-bag samples will be
approximately in the range 70 — 350.

The obtained test error estimate is asymptotically unbiased for large
number B of bootstrap samples and large sample size n.



Example: Boston Housing Dataset

@ Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.

@ Use the entire dataset with p = 13 predictor variables.

n <- nrow (BostonHousing) ## n samples

X <- BostonHousing[,-14]

Y <- BostonHousing[, 14]

B <- 100

maxdepth <- 3

prediction_oob <- rep(0,length(Y)) ## vector with oob predictions

numbertrees_oob <- rep(0,length(Y)) ## number pf oob trees

for (b in 1:B) { ## loop over bootstrap samples
subsample <- sample(l:n,n, replace=TRUE) ## "in-bag" samples
outofbag <- (1l:n) [-subsample] ## "out-of-bag" samples

## fit tree on "in-bag" samples

treeboot <- rpart(Y ~ ., data=X, subset=subsample,

control=rpart.control (maxdepth=maxdepth,minsplit=2))
## predict on oob-samples
prediction_oob[outofbag] <- prediction_oob[outofbag] +
predict (treeboot, newdata=X[outofbag,])
numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1
}
## final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob



Example: Boston Housing Dataset

plot (prediction_oob, Y, x1ab="PREDICTED", ylab="ACTUAL")

For depth d = 1. For depth d = 10.
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Example: Boston Housing Dataset

@ Out-of-bag error as a function of tree depth d:
treedepthd | 1 2 3 4 5 10 30
single tree f 60.7 448 328 312 277 265 273
bagged treesfgug 434 27.0 228 215 20.7 20.1 20.1

@ Without bagging, the optimal tree depth seems to be d = 10.
@ With bagging, we could also take the depth up to d = 30.

Summary:
@ Bagging reduces variance and prevents overfitting
@ Often improves accuracy in practice.

@ Bagged trees cannot be displayed as nicely as single trees and some of
the interpretability of trees is lost.
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