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Model Combination Decision Trees

Decision Trees



Model Combination Decision Trees

Classification and Regression Trees (CART)

Denote input domain by X and let the output domain be Y = {1, . . . ,K}
(classification) or Y = R (regression).
A decision tree gives a partition of X into R disjoint sets (regions)
P = {R1, . . . ,RR}, such that the fitted decision function is constant on
each region Rj ⊂ X , j = 1, . . . ,R, i.e.

ftree(x) = βj,∀x ∈ Rj.

Main strengths: easy to use, easy to interpret.
Often serve as a starting point for powerful model combination and
ensemble techniques: bagging, boosting (random forests).



Model Combination Decision Trees

Example: NHS Direct Self-help Guide108 CHAPTER 8. TREE-BASED CLASSIFIERS

Figure 8.1: Page taken from the NHS Direct self-help guide (left) and corresponding decision tree
(right)

and the entropy
i(p) = −

∑

l

pl log pl,

where p = (p1, . . . , pL) denotes the empirical distribution of the class labels in the partition.4 Figure
8.3 displays the Gini coefficient and the entropy for the two-class case. If the partition consists of only
one class (frequency p1 either 0 or 1), the impurity is 0. Are both classes equally present (frequency
p1 = 0.5), then both impurity measures are maximal.

When splitting a node with empirical distribution p into two nodes with empirical distributions pl

(left node) and pr (right node) the decrease in impurity is

i(p)− (πli(pl) + πri(pr)) ,

where πl is the proportion of observations that is allocated to the left node and πr = 1 − πl is the
proportion of observations allocated to the right node.

We now can use the decrease in impurity to “grow” the tree. Starting with one partition (i.e.
the root node), we repeatedly split all terminal nodes such that each time th decrease in impurity is
maximal. We can repeat this until no more decrease is possible. Figure 8.4 shows the decision tree
for the Pima Indians data set. The Pima Indians data set was collected by the US National Institute of

4It might occur that pl = 0, in this case we define 0 log 0 := 0.
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Decision Trees

A decision tree is a hierarchically organized structure, with each node
splitting the data space into regions based on value of a single feature
(attribute).
Some terminology:

Parent of a node c is the node with an arrow pointing into c.
Children of a node c are those nodes which have node c as a parent.
Root node is the top node of the tree; the only node without parents.
Leaf nodes are nodes which do not have children.
Stumps are trees with just the root node and two leaf nodes.
A K-ary tree is a tree where each node (except for leaf nodes) has K
children. Usually working with binary trees (K = 2).
The depth of a tree is the maximal length of a path from the root node to a
leaf node.

Partition of X into R disjoint sets (R1, . . . ,RR) is determined by the
leaves of the tree.
On each region Rj the same decision/prediction is made: ftree(x) = βj for
all x ∈ Rj - typically as a majority vote of the data items associated to that
leaf (classification) or as their mean (regression)
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Example: Iris Data

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4.4 3.2 1.3 0.2 setosa
5.9 3.0 5.1 1.8 virginica
6.3 3.3 6.0 2.5 virginica
5.3 3.7 1.5 0.2 setosa
5.5 2.5 4.0 1.3 versicolor
6.1 2.9 4.7 1.4 versicolor
6.1 3.0 4.9 1.8 virginica
5.7 2.8 4.5 1.3 versicolor
5.4 3.0 4.5 1.5 versicolor
4.8 3.4 1.6 0.2 setosa
4.6 3.1 1.5 0.2 setosa
4.9 3.1 1.5 0.2 setosa
6.4 2.9 4.3 1.3 versicolor
.......

Previously seen Iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for
50 flowers from each of 3 species of iris. The species are Iris setosa,
versicolor, and virginica.
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Example: Iris Data
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Figure 8.2: Decision tree for the iris data set and corresponding partitioning of the feature space
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Figure 8.3: Gini coefficient and entropy for a two-class problem

Partition of X into R disjoint sets (R1, . . . ,RR) is determined by the leaves of
the tree.
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Decision functions based on trees

For regression problems, the parameterized function is

f (x) =

R∑
j=1

βj1[x∈Rj],

Using squared loss, optimal parameters are:

β̂j =

∑
i yi1[xi∈Rj]∑
i 1[xi∈Rj]

For classification problems, the estimated probability of each class k in
region Rj is simply:

β̂jk =

∑
i 1(yi = k)1[xi∈Rj]∑

i 1[xi∈Rj]

These estimates can be regularized as well.



Model Combination Decision Trees

Partition Estimation

Ideally, would like to find partition that achieves minimal risk: lowest
mean-squared error for prediction or misclassification rate for
classification.
Number of potential partitions is too large to search exhaustively.
‘Greedy’ search heuristics for a good partition:

Start at root.
Determine best feature and value to split.
Recurse on children of node.
Stop at some point.
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Growth Heuristic for Regression Trees

1 Start with R1 = X = Rp.
2 For each feature j = 1, . . . , p, and for each value v ∈ R that we can split

on:
1 Split data set:

I< = {i : x(j)
i < v} I> = {i : x(j)

i ≥ v}

2 Estimate parameters:

β< =

∑
i∈I<

yi

|I<|
β> =

∑
i∈I>

yi

|I>|

3 Compute the quality of split, e.g., the square loss:∑
i∈I<

(yi − β<)2 +
∑
i∈I>

(yi − β>)2

3 Choose split, i.e., feature j and value v, with minimal loss.
4 Recurse on both children, with datasets (xi, yi)i∈I< and (xi, yi)i∈I> .



Model Combination Decision Trees

Boston Housing Data

crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centres
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B - 0.63)^2 where B is the proportion of blacks by town
lstat percentage of lower status of the population
medv median value of owner-occupied homes in USD 1000’s

Predict median house value.
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Boston Housing Data
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Model Combination Decision Trees

Boston Housing Data

Overall, the best first split is on variable rm, average number of rooms per
dwelling.
Final tree contains predictions in leaf nodes.

|rm< 6.941

lstat>=14.4

crim>=6.992 dis>=1.385

rm< 6.543

rm< 7.437

crim>=7.393 nox>=0.6825

11.98 17.14

21.63 27.43
45.58

14.4 33.35 21.9 45.9



Model Combination Decision Trees

Growth Heuristics for Classification Trees

For binary classification, the proportion of class 1 items in node
corresponding to region Rj is given by

β̂j1 =

∑
i 1(yi = 1)1[xi∈Rj]∑

i 1[xi∈Rj]

A split is good if both sides are more pure, i.e. β̂j1 is closer to 0 or 1.
Different measures of node impurity:

Misclassification error: 1−max{β̂j1, 1− β̂j1}.
Gini impurity: 2β̂j1(1− β̂j1).
Entropy: −β̂j1 log β̂j1 − (1− β̂j1) log(1− β̂j1).

Gini and entropy preferred: differentiable and produce purer nodes.
Extension to multi-class:

Misclassification error: 1−maxk β̂jk.
Gini impurity:

∑K
k=1 β̂jk(1− β̂jk).

Entropy: −
∑K

k=1 β̂jk log β̂jk.

Stops once a node has insufficient number of items, or is pure.



Model Combination Decision Trees

Growth Heuristics for Classification Trees

8.2. GROWING A TREE 109

|
Petal.Length< 2.45

Petal.Width< 1.75
setosa    

versicolor virginica 

Decision tree
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Figure 8.2: Decision tree for the iris data set and corresponding partitioning of the feature space
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Figure 8.3: Gini coefficient and entropy for a two-class problem
Misclassification error?



Model Combination Decision Trees

Example: Leukemia Prediction

Leukemia Dataset: Expression values of 3541 genes for 47 patients with
Leukemia ALL subtype (left) and 25 patients with AML (right).



Model Combination Decision Trees

Example: Leukemia Prediction

Tree found is of depth 2.
Very interpretable as it selects 3 out of 4088 genes and bases prediction
only on these.

|X.2481< 0.9985

X.172>=−0.3118 X.35< 0.7172

0 1
0 1



Model Combination Decision Trees

Example: Pima Indians Diabetes Dataset

The subjects: women who were at least 21 years old, of Pima Indian
heritage living near Phoenix, Arizona.
Tested for diabetes according to World Health Organisation criteria.
Features:

number of pregnancies (npreg)
plasma glucose concentration (glu)
diastolic blood pressure (bp)
tricep skin fold thickness (skin)
body mass index(bbi)
diabetes pedigree function (ped)
age (age)



Model Combination Decision Trees

Example: Pima Indians Diabetes Dataset

> library(rpart)
> library(MASS)
> data(Pima.tr)
> rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> rp
n= 200

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)
2) glu< 123.5 109 15 No (0.86238532 0.13761468)
4) age< 28.5 74 4 No (0.94594595 0.05405405) *
5) age>=28.5 35 11 No (0.68571429 0.31428571)
10) glu< 90 9 0 No (1.00000000 0.00000000) *
11) glu>=90 26 11 No (0.57692308 0.42307692)
22) bp>=68 19 6 No (0.68421053 0.31578947) *
23) bp< 68 7 2 Yes (0.28571429 0.71428571) *

3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)
6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222) *
13) glu>=166 8 2 Yes (0.25000000 0.75000000) *
7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286)
14) bmi< 28.65 11 3 No (0.72727273 0.27272727) *
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) *



Model Combination Decision Trees

Example: Pima Indians Diabetes Dataset

> plot(rp,margin=0.1); text(rp,use.n=T)

|
glu< 123.5

age< 28.5

glu< 90

bp>=68

ped< 0.3095

glu< 166 bmi< 28.65

No 
70/4

No 
9/0

No 
13/6

Yes
2/5

No 
21/6

Yes
2/6 No 

8/3
Yes
7/38



Model Combination Decision Trees

Model Complexity

When should tree growing be stopped?
Will need to control complexity to prevent overfitting, and in general find
optimal tree size with best predictive performance.
A regularized objective

Remp(T) + C × size(T)

Grow the tree from scratch and stop once the criterion objective starts to
increase.
First grow the full tree and prune nodes (starting at leaves), until the
objective starts to increase.

Second option is preferred as the choice of tree is less sensitive to
“wrong” choices of split points and variables to split on in the first stages
of tree fitting.
Use cross-validation to determine optimal C.



Model Combination Decision Trees

Model Complexity

> rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
control=rpart.control(xval=10))) ## 10-fold CV

> plotcp(rp)
> rp2 <- prune.rpart(rp,.029)
> plot(rp2); text(rp2)

●

●

● ●

●

●

cp

X
−

va
l R

el
at

iv
e 

E
rr

or

0.
6

0.
8

1.
0

1.
2

Inf 0.19 0.11 0.066 0.029 0.012

1 2 3 4 5 8

size of tree

|
glu< 123.5

ped< 0.3095

glu< 166 bmi< 28.65

No 

No Yes
No Yes



Model Combination Bagging

Bagging



Model Combination Bagging

Model Variability

|
glu< 123.5

ped< 0.3095

glu< 166 bmi< 28.65

No 

No Yes
No Yes

Is the tree ‘stable’ if training data were slightly different?



Model Combination Bagging

Bootstrap for Classification Trees

The bootstrap is a way to assess the variance of estimators.
Fit multiple trees, each on a bootstrapped sample. This is a data set
obtained by sampling with replacement n times from training set.

> n <- nrow(Pima.tr)
> bss <- sample(1:n, n , replace=TRUE)
> sort(bss)
[1] 2 4 4 5 6 7 9 10 11 12 12 12 12 13 13 15 15 20 ...

> tree_boot <- rpart(Pima.tr[bss,8] ~ ., data=Pima.tr[bss,-8],
control=rpart.control(xval=10)) ## 10-fold CV

|glu< 123.5

age< 28.5

glu< 94.5

npreg< 5.5

glu< 156.5

ped< 0.421No 

No 

No Yes

No Yes

Yes

|glu< 123.5

ped< 0.348

glu< 164.5 bmi< 28.65

No 

No Yes
No Yes



Model Combination Bagging

Bootstrap for Regression Trees

Regression for Boston housing data.
Predict median house prices based only on crime rate.
Use decision stump—the simplest tree with a single split at root.
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Model Combination Bagging

Bootstrap for Regression Trees

We fit a predictor f̂ (x) on the data {(xi, yi)}n
i=1.

Assess the variance of f̂ (x) by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators

f̂ b(x), b = 1, . . . ,B

Each tree f̂ b is fitted on the resampled data (xji , yji)
n
i=1 where each ji is

chosen randomly from {1, . . . , n} with replacement.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG( CRIME )

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG( CRIME )

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E



Model Combination Bagging

Bagging

Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples.

1 For b = 1, . . . ,B:
1 Draw indices (j1, . . . , jn) from the set {1, . . . , n} with replacement.
2 Fit the model, and form predictor f̂ b(x) based on bootstrap sample

(xj1 , yj1 ), . . . , (xjn , yjn )

2 Form bagged estimator

f̂Bag(x) =
1
B

B∑
b=1

f̂ b(x)



Model Combination Bagging

Bagging

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG( CRIME )

M
E

D
IA

N
 H

O
U

S
E

 P
R

IC
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●
●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

0
10

20
30

40

LOG( CRIME )
M

E
D

IA
N

 H
O

U
S

E
 P

R
IC

E

Bagging smooths out the drop in the estimate of median house prices.
Bagging reduces the variance of predictions, i.e. when taking
expectations over a random dataset D:

ED
[
(f̂ (x)− ED[f̂ (x)])2] ≥ ED

[
(f̂Bag(x)− ED[f̂Bag(x)])2]



Model Combination Bagging

Variance Reduction in Bagging

Suppose, in an ideal world, our estimators f̂ b are each based on different
independent datasets of size n from the true joint distribution of X,Y.
The aggregated estimator would then be

f̂ag(x) =
1
B

B∑
b=1

f̂ b(x)→ f̄ (x) = ED[f̂ (x)] as B→∞

where expectation is with respect to datasets of size n.
The squared-loss is:

ED[(Y − f̂ag(X))2|X = x] = ED[(Y − f̄ (X))2|X = x] + ED[(f̄ (X)− f̂ag(X))2|X = x]

→ ED[(Y − f̄ (X))2|X = x] as B→∞.

Aggregation reduces the squared loss by eliminating variance of f̂ (x).
In bagging, variance reduction still applies at the cost of a small increase
in bias.
Bagging is most useful for flexible estimators with high variance (and
low bias).



Model Combination Bagging

Variance Reduction in Bagging

Deeper trees have higher complexity and variance.
Compare bagging trees of depth 1 and 3.
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Model Combination Bagging

Out-of-bag Test Error Estimation

How well does bagging to? Can we estimate generalization performance,
and tune hyperparameters?
Answer 1: cross-validation.

● ● ● ● ● ● ● ● ●v=4

● ● ● ● ● ● ● ● ●v=3

● ● ● ● ● ● ● ● ●v=2

● ● ● ● ● ● ● ● ●v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

For each v = 1, . . . ,V,
fit f̂Bag on the training samples.
predict on validation set.

Compute the CV error by averaging the loss across all test observations.



Model Combination Bagging

Out-of-bag Test Error Estimation

But to fit f̂Bag on the training set for each v = 1, . . . ,V, we have to train on
B bootstrap samples!

● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ●● b=1

v=4

● ● ● ● ● ● ● ● ● ● ● ●●● ●● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=1

v=3

● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●● ●●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●●● ●● ● b=1

v=2

● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●●● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ●●● ●● b=1

v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

Answer 2: Out-of-bag test error estimation.



Model Combination Bagging

Out-of-bag Test Error Estimation

Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

f̂ oob(x1) =
1
4

∑
b∈{3,4,8,10}

f̂ b(x1)



Model Combination Bagging

Out-of-bag Test Error Estimation

Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

f̂ oob(x2) =
1
3

∑
b∈{2,8,10}

f̂ b(x2)



Model Combination Bagging

Out-of-bag Test Error Estimation

For each i = 1, . . . , n, the out-of-bag sample is:

B̃i = {b : xi is not in training set} ⊆ {1, . . . ,B}.

Construct the out-of-bag estimate at xi:

f̂ oob(xi) =
1
|B̃i|

∑
b∈B̃i

f̂ b(ii)

Out-of-bag risk:

Roob =
1
n

n∑
i=1

L(yi, f̂ oob(xi))



Model Combination Bagging

Out-of-bag Test Error Estimation

We need |B̃i| to be reasonably large for all i = 1, . . . , n.
The probability πoob of an observation NOT being included in a bootstrap
sample (j1, . . . , jn) (and hence being ‘out-of-bag’) is:

πoob =

n∏
i=1

(
1− 1

n

)
n→∞−→ 1

e
≈ 0.367.

Hence E[|B̃i|] ≈ 0.367B

In practice, number of bootstrap samples B is typically between 200 and
1000, meaning that the number |B̃i| of out-of-bag samples will be
approximately in the range 70− 350.
The obtained test error estimate is asymptotically unbiased for large
number B of bootstrap samples and large sample size n.



Model Combination Bagging

Example: Boston Housing Dataset

Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.
Use the entire dataset with p = 13 predictor variables.

n <- nrow(BostonHousing) ## n samples
X <- BostonHousing[,-14]
Y <- BostonHousing[,14]
B <- 100
maxdepth <- 3
prediction_oob <- rep(0,length(Y)) ## vector with oob predictions
numbertrees_oob <- rep(0,length(Y)) ## number pf oob trees
for (b in 1:B) { ## loop over bootstrap samples
subsample <- sample(1:n,n,replace=TRUE) ## "in-bag" samples
outofbag <- (1:n)[-subsample] ## "out-of-bag" samples

## fit tree on "in-bag" samples
treeboot <- rpart(Y ~ ., data=X, subset=subsample,

control=rpart.control(maxdepth=maxdepth,minsplit=2))
## predict on oob-samples

prediction_oob[outofbag] <- prediction_oob[outofbag] +
predict(treeboot, newdata=X[outofbag,])

numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1
}
## final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob



Model Combination Bagging

Example: Boston Housing Dataset

plot(prediction_oob, Y, xlab="PREDICTED", ylab="ACTUAL")

For depth d = 1.
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For depth d = 10.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●● ●●
●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

● ●●●

● ●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

● ●

●●
●

●
●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40

10
20

30
40

50

PREDICTED

A
C

T
U

A
L



Model Combination Bagging

Example: Boston Housing Dataset

Out-of-bag error as a function of tree depth d:
tree depth d 1 2 3 4 5 10 30
single tree f̂ 60.7 44.8 32.8 31.2 27.7 26.5 27.3

bagged trees f̂Bag 43.4 27.0 22.8 21.5 20.7 20.1 20.1
Without bagging, the optimal tree depth seems to be d = 10.
With bagging, we could also take the depth up to d = 30.

Summary:
Bagging reduces variance and prevents overfitting
Often improves accuracy in practice.
Bagged trees cannot be displayed as nicely as single trees and some of
the interpretability of trees is lost.
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