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Model Complexity and Generalization|




Generalization

@ Generalization ability: what is the out-of-sample error of learner f?

@ training error # testing error.

@ We learn f by minimizing some variant of empirical risk R®™°(f)- what can
we say about the true risk R(f)?

@ Two important factors determining generalization ability:

@ Model complexity
e Training data size
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Fixed dataset size, varying model complexity.
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Fixed model complexity, varying dataset size.
Two models: one simple, one complex. Which is which?



Model Selection Model Complexity and Generalization

Bias-Variance Tradeoff

@ Where does the prediction error come from?
@ Example: Squared loss in regression: X = R”, Y = R,

L(Y,f(X)) = (Y = f(X))?

@ Optimal f is the conditional mean:

fel) = E[Y[X = x]

@ Follows from R(f) = ExE {(Y ff(X))ZIX} and

E[(r—f ()| X =]
= E[V’|X=x] -2f ()E[Y|X =x] +f (x)°
Var[Y|X = x] + (E[Y| X = x] — f(x))°.
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Bias-Variance Tradeoff

@ Optimal risk is the intrinsic conditional variability of Y (noise):

R(f.) = Ex [Var [Y|X]]

@ Excessrisk:

R() = R() = Ex [(7(X) ~ £.(X))?]

@ How does the excess risk behave on average?

@ Consider a randomly selected dataset D = {(X;, ¥;)}._, and f(P) trained
on D using a model (hypothesis class) H.

B [R() = K] = EoBx | (1P0 -£.00)
~ Balo | (000 -£(0) |
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Bias-Variance Tradeoff

@ Denote f(x) = Epf(P)(x) (average decision function over all possible
datasets)

2

B | (1200 ~£.00)| = | (P10 - 700) | + G0~ £.00)

Bias% (H,n)

Vary (H,n)

Now,
EpR(fP)) = R(f.) + ExVary(H,n) + ExBias:(H,n)

Where does the prediction error come from?
@ Noise: Intrinsic difficulty of regression problem.

@ Bias: How far away is the best learner in the model (average learner over
all possible datasets) from the optimal one?

@ Variance: How variable is our learning method if given different datasets?
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Validation and Cross-Validation




Validation and Cross-Validation
Empirical vs True Risk

@ In general,
R(f) = R®™(f) + overfit penalty.

@ Overfit penalty depends on the complexity of the model (VC analysis).

@ Regularization: approximate the overfit penalty. More complex the
model, larger the overfit penalty.

@ (Cross-)Validation: try to estimate R(f) directly.
@ For any example not used in training:

E [L ()’testaf(xtest))] = R(f)

@ But for examples used in training:

E [L (Yirain,f (Xtrain))] 7 R(f)-
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Optimizing Tuning Parameters

@ How can we optimize generalization ability,
via optimizing choice of tuning parameters,
model size, and learning parameters?

@ Suppose we have split data into training/test
set.

@ Test set can be used to determine
generalization ability, and used to choose
best setting of tuning parameters/model
size/learning parameters with best
generalization.

@ Once these tuning parameters are chosen,
still important to determine generalization
ability, but cannot use performance on test
set to gauge this anymore!

@ |dea: split data into 3 sets: training set, test
set, and validation set.

Training set
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Test set

generalization
performance
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Validation error

@ Out-of-sample average loss. For a dataset {%;,y;}/_, unseen in training

R™(f) = ZL Vi f ()

o E[RA(/)] = R(), Var [R(f)] = L, ie. RA(f) = R() + O ()
@ Just like testing error so far.
@ It becomes validation error only once it is used to change our learning.
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Validation

@ For each combination of tuning parameters ~:
e Train our model on the training set, fit
parameters 6 = 6(+y), obtaining decision
function fy(+).
e Evaluate R (fy(,)) average loss on a
validation set.
@ Pick v* with best performance on validation
set.

@ Using ~*, train on both training and
validation set to obtain the optimal 6*.

® R*(fy,+)) is now a biased estimate of
R(fy(+)) and can be overly optimistic!

@ Evaluate model with ~*, 6* on test set,
reporting generalization performance.

Validation set

—

Training set

—

.

Model
complexity

Test set generalization

performance



Validation and Cross-Validation
Bias introduced by validation

@ Example: Selecting between two equally bad classifiers f; and f;:

R(f)) = R(f) = 0.5,

@ Assume that we have independent unbiased estimators Ry = R@(f;),
Rz = R"(f,), both uniform on [0, 1]

@ Learning rule f, chosen to minimize R*@ is either f; or f», so also equally
bad.

@ But Emin{R¢,R2} = % so in terms of validation error it may appear that
we are getting an improvement!
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Validation error and Generalization

How contaminated are different parts of data in terms of being able to tell us
something about generalization ability?
@ Training data: fully contaminated, used in learning - R°™P(f) is usually far
from R(f) (unless the model is too simple for the amount of data).

@ Validation data: partly contaminated, used in model selection /
meta-learning - R (f) is biased, but still useful, provided that:

@ we have a large enough validation set size v
e we do not use it to select from a large number M of models

@ Test data: clean, not used for any part of learning.
Typically,

R(f) < RA(f) + O( logM>

1%

overfit penalty of the meta-model
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Size of validation set?

@ In practice, there is just one dataset! If v is
used for computing validation error, then
only n — v used for training.

e Smallv: R (f7) is a bad estimate of R(f ™)

e Large v: R (f™) is a reliable estimate of a
much worse risk (f~ learned on much less
data than f)!

@ We are using:
~ CR(T) o~ RO

(need small v) (need large v)

@ Wasteful to split into 3 subsets.
o Different approach: cross-validation.
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Cross-Validation
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Cross-Validation

@ Basic approach:

@ Split training set into T folds.
e Foreach~vandeachr=1,...,T:

@ Use fold r as validation set and the rest to train the model parameters 6, = 6,(~),
obtaining decision function f; .
1
R = o D L0y ()
[Fold(1)] icFold(r)

e Choose v* which minimizes validation error averaged over folds

T
1 _
? Z R;Ial(ft,'y)
=1
e Train model with tuning parameter v* on all training set to obtain f, .
o Report generalization performance on test set.
@ Leave-One-Out (LOO) cross validation: one data item per fold, i.e.,
T = n.

Cross-validation can be computationally expensive (T x increase in
complexity).
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Leave-One-Out Cross-Validation

Leave-one-out (LOO) cross validation: one data item per fold, i.e., T = n.

@ Since only one data item not used in training, R(f; ) are all very close to
R(f,) (small v benefit).

@ Thus,

n

1 !
- ZR;/al(ft,_'y) — - ZL()’zafz,_'y(x’))
t=1

=1
has a small variance (large v benefit).
@ All examples for validation and all examples for training.
@ summands are no longer independent
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