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Generalization Learning Curves

A Underfit

Overfit

@ Generalization ability: what is the out-of-sample error of learner f?

@ training error # testing error.

@ We learn f by minimizing some variant of empirical risk R°™P(f)- what can
we say about the true risk R(f)?

@ Two important factors determining generalization ability:

o Model complexity
e Training data size
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Model complexity/flexibility

Fixed dataset size, varying model complexity.
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testing error
testing error

prediction error
prediction error
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training dataset size training dataset size

Fixed model complexity, varying dataset size.
Two models: one simple, one complex. Which is which?

Model Complexity and Generalization
Bias-Variance Tradeoff

@ Optimal risk is the intrinsic conditional variability of ¥ (noise):

R(f.) = Ex [Var [Y|X]]

@ Excess risk:

R() = R(.) = Ex |(F(X) ~ £.(X))?]

@ How does the excess risk behave on average?

@ Consider a randomly selected dataset D = {(X;, ¥;)}7_, and () trained
on D using a model (hypothesis class) H.

Ep [R¢P) - R(E)| = EDEX{(W(X) —ﬂ(X)ﬂ

= ExEp {(f(p)(X) —f*(X)ﬂ -

Model Complexity and Generalization
Bias-Variance Tradeoff

@ Where does the prediction error come from?
@ Example: Squared loss in regression: X = R”, Y = R,

L(Y,f(X)) = (Y - f(X))?

@ Optimal 1 is the conditional mean:

fel) =E[Y|X =]

o Follows from R(f) = ExE [(Y 7 (x))z\ x} and

E[(r—f ()| x =+
= E[YX=2a] -2f WE[Y|X =x] +f(x)

= Var[Y|X =x]+ (E[Y]|X = x] —f(x))*.

Model Complexity and Generalization
Bias-Variance Tradeoff

@ Denote f(x) = Epf(P)(x) (average decision function over all possible
datasets)

o | (100 - £.00) | =50 | (P00 ~700) | + 0 .00
Bias% (H,n)

Vary (H ,n)

Now,
EpR(fP)) = R(f.) + ExVarx(H, n) + ExBiasx(H,n)

Where does the prediction error come from?
@ Noise: Intrinsic difficulty of regression problem.

@ Bias: How far away is the best learner in the model (average learner over
all possible datasets) from the optimal one?

@ Variance: How variable is our learning method if given different datasets?
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Validation and Cross-Validation
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Validation and Cross-Validation
Empirical vs True Risk

@ In general,

R(f) = R°™(f) + overfit penalty.

@ Overfit penalty depends on the complexity of the model (VC analysis).

@ Regularization: approximate the overfit penalty. More complex the
model, larger the overfit penalty.

@ (Cross-)Validation: try to estimate R(f) directly.
@ For any example not used in training:

E [L (test, [ (xtest))] = R(f).

@ But for examples used in training:

E [L (Yrain,f (Xtrain))] 7 R(f).
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Optimizing Tuning Parameters

@ How can we optimize generalization ability,
via optimizing choice of tuning parameters,
model size, and learning parameters?

@ Suppose we have split data into training/test
set.

@ Test set can be used to determine
generalization ability, and used to choose
best setting of tuning parameters/model
size/learning parameters with best
generalization.

@ Once these tuning parameters are chosen,
still important to determine generalization
ability, but cannot use performance on test
set to gauge this anymore!

@ |dea: split data into 3 sets: training set, test
set, and validation set.
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Validation and Cross-Validation
Validation error

@ Out-of-sample average loss. For a dataset {%;,y;}/_, unseen in training

1<
Rval(f) = ; ZL(S)Hf
i=1

o E [R¥(f)] = R(f), Var [R?(f)] = L, i.e. RA() = R() + O (L)

@ Just like testing error so far.

(X))

@ It becomes validation error only once it is used to change our learning.

Validation

@ For each combination of tuning parameters ~:
e Train our model on the training set, fit
parameters 6 = 6(y), obtaining decision
function fy (.
o Evaluate R (fy(,) average loss on a
validation set.
@ Pick ~* with best performance on validation
set.

@ Using ~*, train on both training and
validation set to obtain the optimal 6*.

® R“(fy.,~)) is now a biased estimate of
R(fs(4+)) and can be overly optimistic!

@ Evaluate model with v*, 0* on test set,
reporting generalization performance.

Model Selection Validation and Cross-Validation
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Bias introduced by validation

@ Example: Selecting between two equally bad classifiers f; and f>:

R(fi) =R(f2) =0

5.

@ Assume that we have independent unbiased estimators Ry = R*3(f}),

Rz = R (f,), both uniform on [0, 1]

@ Learning rule f, chosen to minimize R is either f; or f>, so also equally

bad.

@ But Emin{R¢,R2} = % so in terms of validation error it may appear that

we are getting an improvement!

Model Selection Validation and Cross-Validation

Size of validation set?

@ In practice, there is just one dataset! If v is
used for computing validation error, then
only n — v used for training.

e Smallv: R (f7) is a bad estimate of R(f ")

o Large v: R (f7) is a reliable estimate of a
much worse risk (f~ learned on much less
data than f)!

@ We are using:

~ - ~
~

(need small v) (need large v)

Rval (f— )

@ Wasteful to split into 3 subsets.
@ Different approach: cross-validation.
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Validation and Cross-Validation
Validation error and Generalization

How contaminated are different parts of data in terms of being able to tell us
something about generalization ability?

@ Training data: fully contaminated, used in learning - R®™P(f) is usually far
from R(f) (unless the model is too simple for the amount of data).

@ Validation data: partly contaminated, used in model selection /
meta-learning - R"a'(f) is biased, but still useful, provided that:

@ we have a large enough validation set size v
@ we do not use it to select from a large number M of models

@ Test data: clean, not used for any part of learning.

Typically,
logM
v )

overfit penalty of the meta-model

R(f) <R+ O (
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Cross-Validation
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Validation and Cross-Validation
Cross-Validation

@ Basic approach:

e Split training set into T folds.
e Foreach~yandeachr=1,...,T:

@ Use fold 7 as validation set and the rest to train the model parameters 0, = 6,(~),
obtaining decision function f; .
1
RPR) = g D LOnfin(a)
IFold)] ;£

@ Choose v* which minimizes validation error averaged over folds

T
1 _
7RG
=1
e Train model with tuning parameter ~* on all training set to obtain f.-.
o Report generalization performance on test set.
@ Leave-One-Out (LOO) cross validation: one data item per fold, i.e.,
T = n.

Cross-validation can be computationally expensive (T'x increase in
complexity).

Model Selection Validation and Cross-Validation

Leave-One-Out Cross-Validation

Leave-one-out (LOO) cross validation: one data item per fold, i.e., T = n.

@ Since only one data item not used in training, R(f, ) are all very close to
R(f,) (small v benefit).

@ Thus,

1 n n

- Z )’al(fty_v) = %ZL(ytvf;,_'y(xt))

has a small variance (large v benefit).
@ All examples for validation and all examples for training.
@ summands are no longer independent



