HT2015: SC4
Statistical Data Mining and Machine Learning

Dino Sejdinovic
Department of Statistics
Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html]

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

Nonlinear and Nonparametric Methods Local smoothing and Nearest Neighbours

Nearest Neighbours

.
Nonlinear Methods

@ Nonlinearity by data transformation: x — ¢(x) (explicit or implicit).
@ A global approach. Decision function and optimal parameters can
depend on training examples in the whole domain X.

@ Alternative approach: decision function f(x) depends only on instances in
the local neighbourhood of x.

Smoothing kernels

@ Recall the plug-in generative classifier f(x) = argmaxc; gy T18i(x)

@ What if we do not want to assume that the true class-/ conditional density
gi(x) takes any particular form (i.e., multivariate normal)?

@ Use a kernel density estimate

T T - T r
— Uniform

10t — Trangle
— Epanechnikoy
— Quartic
— Triweight

0.8 | / Gaussian

Cosine
061

[\

smoothing (Parzen) kernel # positive-semidefinite (Mercer) kernel

°
=

°
N

local similarity inner product between features

.
Smoothing kernels

@ Kernel density estimate

@ since 7; = 7', discrimination based on total similarity of x to instances in
each of the classes:

f(x) = argmax Z K(x — x;)

le{1,....K} ;.

@ Posterior class probabilities

P(Y=IX=x)= 181(x) _ Zi:ny,':l K(x = x;)
e S mgix) e k= x)

.
k-Nearest Neighbours

@ Prediction at a data vector x is determined
by the set nex(x) of k nearest neighbours
of x among the training set.

@ Classification: majority vote of the A A
neighbours: [| e
- |] v
fiun(x) = argmax |{j € ney(x) : y; = 1}]:
! H E
.
@ Regression: average among the N
neighbours:
Z' ney (x y ----
Jinn(x) = JETR()I

figure by A. Ajanki

Local smoothing and Nearest Neighbours
k-Nearest Neighbour Demo

@
+
©
e+ 4
+ + +
" + P 13 +
< +
+ + +
+++ F +
- Ty
+ + "
4+t + + + +
~ o o+ AF o+ g+ +
o A .
o + 4+, ° %o R~
3 - °, +to o o £,
+ + . o 408 T
S Dc“m:uo
. . o +9°
o s e ° e’ T, .
® .S e,
., B
< o 4
; 3 ° o . e
. . @o
o | o
1 o
o
T T T
-5 0 5
LD1

Data

k-Nearest Neighbour Demo

trainx[, 2]

-5 0 5

trainx], 1]

Result of 1NN

k-Nearest Neighbour Demo

trainx], 2]

trainx], 1]

Result of 3NN

k-Nearest Neighbour Demo

trainx], 2]

trainx], 1]

Result of 5NN

k-Nearest Neighbour Demo

trainx[, 2]

trainx], 1]

Result of 11NN

k-Nearest Neighbour Demo

trainx[, 2]

trainx], 1]

Result of 21NN

k-Nearest Neighbour Demo

trainx], 2]

x

trainx], 1]

Result of 31NN

Nonlinear and Nonparametric Methods Local smoothing and Nearest Neighbours

k-Nearest Neighbour Demo

trainx], 2]

trainx], 1]

Result of 51NN

Local smoothing and Nearest Neighbours
k-Nearest Neighbour Demo — R Code |

library (MASS)

load crabs data

data (crabs)

ct <- as.numeric(crabs[,1])-1+2 (as.numeric (crabs[,2])-1)
project to first two LD

cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict (cb.lda)

X <- as.matrix(cb.ldp$x[,1:2])

y <- as.numeric(crabs[,2])-1

x <= x + rnorm(dim(x) [1]+dim(x) [2])*1.5
egscplot (x, pch=2xy+1, col=1)

n <- length (y)

#get training indices
i <- sample(rep (c(TRUE,FALSE),each=n/2),n, replace=FALSE)

kNN <- function(k,x,y,i,gridsize=100) {

P <= dim(x) [2]
train <- (1:n)[i]
test <= (1:n)[!i]

trainx <- x[train,]
trainy <- yl[train]
testx <- x[test,]
testy <- yltest]

trainn <- dim(trainx) [1]
testn <- dim(testx)[1]

gridxl <- seq(min(x[,1]),max (x[,2]),length=gridsize)
gridx2 seq(min(x[,2]),max (x[,2]), length=gridsize)
gridx <- as.matrix(expand.grid(gridxl,gridx2))
gridn <- dim(gridx)[1]

A

Local smoothing and Nearest Neighbours
k-Nearest Neighbour Demo — R Code |l

calculate distances
trainxx <- t((trainxstrainx) %% matrix(l,p,1))
testxx <- (testx+testx) $+% matrix(l,p,1)
gridxx <- (gridx+gridx) %+% matrix(l,p,1)
testtraindist <- matrix(l,testn,1l) %% trainxx +
testxx %+% matrix(l,1,trainn) -
2+ (testx %+% t(trainx))
gridtraindist <- matrix(l,gridn,1) %% trainxx +
gridxx %% matrix(1l,1,trainn) -
2% (gridx $*% t(trainx))

predict

testp <- numeric(testn)

gridp <- numeric(gridn)

for (j in l:testn) {
nearestneighbors <- order (testtraindist[j,]) [1:k]
testp[j] <- mean(trainy[nearestneighbors])

}

for (j in l:gridn) {
nearestneighbors <- order(gridtraindist([3,]) [1:k]
gridp[j] <- mean(trainy[nearestneighbors])

}

predy <- as.numeric(testp>.5)

plot (trainx[,1],trainx[,2],pch=trainy=3+1,col=4, lud=.5)
points (testx[,1],testx[,2],pch=testy+3+1, col=2+ (predy==testy), lwd=3)
contour (gridxl, gridx2, matrix (gridp, gridsize, gridsize),
levels=seq(.1,.9,.1),lud=.5, add=TRUE)
contour (gridxl, gridx2, matrix (gridp, gridsize, gridsize),
levels=c(.5), lwd=2, add=TRUE)

Local smoothing and Nearest Neighbours
Asymptotic Performance of 1NN

@ Let (x;,y:);_, be training data where x; € R” and y; € {1,2,...,K}.

@ We define
fBayeS (x) ‘= argmax 78 (x) s
le{1,...,K}
ff,’fj)N (x) = yj,s.t x;is the nearest neigbour of x.

@ The (optimal) Bayes risk and 1NN risk are:
RBayes = E[l (Y #fBayes (X))]
R = E[1(Y Afn)]

@ Asn — oo, RmN — Rinn, Where

K »

RBayes < R1NN < 2RBayes - HRBayeS'

Local smoothing and Nearest Neighbours
k-Nearest Neighbours — Discussion

Simple and essentially model-free, i.e., weaker assumptions than LDA,
Naive Bayes and logistic regression.
Not useful for understanding relationships between attributes and class
predictions.
Sensitive to the choice of distance and to the choice of k
High computational cost:

o Need to store all training data.

o Need to compare each test data vector to all training data.

o Need a lot of data in high dimensions.
Mitigation: compute approximate nearest neighbours, using kd-trees,
cover trees, random forests.

nd Nonparametric Methods Artificial Neural Networks

Artificial Neural Networks

Nonlinear and Nonparametric Methods Artificial Neural Networks

Biological inspiration

@ Basic computational elements:
neurons.

@ Receives signals from other
neurons via dendrites.

@ Sends processed signals via
axons.

@ Axon-dendrite interactions at
synapses.

@ 10'° — 10'! neurons.
@ 10" — 105 synapses.

@ Connectionist architecture: the
network and its structure govern
the computations performed.

Single Neuron Classifier

wy

o 5()

wlz+b
wp,

™
a
~
[
=
&

@ activation w'x + b (linear in inputs x)

@ activation/transfer function s gives the output/activity (potentially
nonlinear in x)

@ common nonlinear activation function s(a) =
@ learn w and b via gradient descent

1+e - logistic regression

Artificial Neural Networks

\\:

R
N
W,

N

N
» ..QN.

2

=
NS

N\
N

D
N

Q
N

N
N
NN
\Q\

N

7y

\\\
§\

Nonlinear and Nonparametric Methods Artificial Neural Networks
Overfitting

-y

(= S - T - B =]

(f)

iterations 30,80 a 10 100 1000 10000 100000

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

Nonlinear and Nonparametric Methods Artificial Neural Networks
Overfitting

10 T T 10
ol 2f
8 | | !i x— 8 I 0)
6 EI! 94 I; * — 6 |- 2k
i _'D) 1 *
4 + I. | i B 4 4
o | 6L
2+ o EWI] - 2L ¢
. ! I . 8|
) R P P RO
0 2 4 6 8 10 0 oy \
iterations 500,3000 2y 10 100 1000 10000 100000

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

Nonlinear and Nonparametric Methods Artificial Neural Networks
Overfitting

8t "'\ i

(k)

10 10 1 1

12 I L I La

iterations 10000,40000 1 10 100 1000 10000 100000
prevent overfitting by:
@ early stopping: just halt the gradient descent

@ regularization: L,-regularization called weight decay in neural networks
literature.

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

.
Multilayer Networks

@ Data vectors x; € R?, binary labels y; € {0, 1}. e
@ inputs x;,...,x;,
@ outputy;, =P(Y =1|X =x;)
@ hidden unit activities 5,1, ..., 4,
o Compute hidden unit activities:
(2 (10 () (1) (1) (1)
N

hi = s bﬁ’+§;wj'-’zxv N\ W7
(=)

o Compute output probability:

$i=s <b" +Y wfhﬂ)
=1

]
"&4“‘
N

XTI N
DETBERS

Artificial Neural Networks

Nonlinear and Nonparametric Methods

Multilayer Networks

oo SRR
SREEIIRIRI
R
TR TR
R
AR “\,\\ \‘\\\\‘
SO
W
S

Wt

e

s

7755
%

)

Training a Neural Network

@ Objective function: L,-regularized log-loss

n
. A 0
== _viloggi+ (1 =y log(l =3i) + 2 | D_(w})* + > _(w))?
=1 il 7
where m
L (0 0T IR (R0 o
=1

@ Optimize parameters § = {b",w",b°,w’}, where b" € Rm, wh e RPXm,
b’ € R, w’ € R™ with gradient descent.

oJ oJ 8y,
= w/ = 1 h; >
owp T 25, Wit Z i
oJ oJ 0y; Ohy
=+ = Aw ; 1 — hy)x;.
3w Z 0y; Ohy Bwl ’l + Z —yiwih 1%

@ [,-regularization often called weight decay.
@ Multiple hidden layers: Backpropagation algorithm

. .
Multiple hidden layers

§i = hEH!
@) BT =5 (W)
(41 4 . ; :
hL o o £ .o e L ° WEL = (wj,) ,: weight matrix at
AN ~ the (¢ + 1)-th layer, weight wj; on

the edge between ij~' and i
@ s: entrywise (logistic) transfer
function

gi=s (W s (W (o5 (W)

>0
T = hY Tip = hy,

Nonlinear and Nonparametric Methods Artificial Neural Networks

Backpropagation
g = hit! .
O\ J == vilogh ™ +(1-y;) log(1-h{™")
PR SN i=1
4 1 ~ ~
e 1 A
e, | AN Qe Gradients wrt ij; computed by
il . o o . o o im recursive applications of chain
rule, and propagated through the
network backwards.
oJ - Vi L —y;
OWEFT T T
e o o hfj ﬂ _ i oJ 8hfr+l
Onl; S onl on
Z d r= d
w* n . 0
ik aJ _ Z ﬂ Ohy;
Oy = Ohi; Owy

Neural Networks

1.0

0.8

0.6

x2

0.4

0.2

0.0

Global solution and local minima

Neural network fit with a weight decay of 0.01

T, ° o 0 o
o
°
°
°
4 o ©
°
°
°
°
®
o
°
°
—— Solution (global minimum)
--- Local minimum 1 & od .
Local minimum 2 o
-~ Local minimum 3 o
T T T T T
0.0 02 0.4 06 0.8 1.0

R package implementing neural networks with a single hidden layer: nnet.

Neural Networks — Discussion

@ Nonlinear hidden units introduce modelling flexibility.

@ In contrast to user-introduced nonlinearities, features are global, and can
be learned to maximize predictive performance.

@ Neural networks with a single hidden layer and sufficiently many hidden
units can model arbitrarily complex functions.

@ Optimization problem is not convex, and objective function can have
many local optima, plateaus and ridges.

@ On large scale problems, often use stochastic gradient descent, along
with a whole host of techniques for optimization, regularization, and
initialization.

@ Recent developments, especially by Geoffrey Hinton, Yann LeCun,
Yoshua Bengio, Andrew Ng and others. See also
http://deeplearning.net/.

https://www.cs.toronto.edu/~hinton/
http://yann.lecun.com/
http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html
http://cs.stanford.edu/people/ang/
http://deeplearning.net/

	Nonlinear and Nonparametric Methods
	Local smoothing and Nearest Neighbours
	Artificial Neural Networks

