HT2015: SC4 Statistical Data Mining and Machine Learning

Dino SejdinovicDepartment of Statistics Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

Nearest Neighbours

Nonlinear Methods

- Nonlinearity by data transformation: $x \mapsto \varphi(x)$ (explicit or implicit).
- A global approach. Decision function and optimal parameters can depend on training examples in the whole domain X.
- Alternative approach: decision function f(x) depends only on instances in the **local neighbourhood** of x.

Smoothing kernels

- Recall the plug-in generative classifier $f(x) = \operatorname{argmax}_{l \in \{1, \dots, K\}} \hat{\pi}_l \hat{g}_l(x)$
- What if we do not want to assume that the true class-l conditional density $g_l(x)$ takes any particular form (i.e., multivariate normal)?
- Use a kernel density estimate

$$\hat{g}_l(x) = \frac{1}{n_l} \sum_{i: y_i = l} \kappa(x - x_i)$$



smoothing (Parzen) kernel ≠ positive-semidefinite (Mercer) kernel

Smoothing kernels

Kernel density estimate

$$\hat{g}_l(x) = \frac{1}{n_l} \sum_{i: y_i = l} \kappa(x - x_i)$$

• since $\hat{\pi}_l = \frac{n_l}{n}$, discrimination based on total similarity of x to instances in each of the classes:

$$f(x) = \underset{l \in \{1, \dots, K\}}{\operatorname{argmax}} \sum_{i: y_i = l} \kappa(x - x_i)$$

Posterior class probabilities

$$\hat{\mathbb{P}}(Y = l | X = x) = \frac{\hat{\pi}_l \hat{g}_l(x)}{\sum_{j=1}^K \hat{\pi}_j \hat{g}_j(x)} = \frac{\sum_{i: y_i = l} \kappa(x - x_i)}{\sum_{j=1}^n \kappa(x - x_j)}$$

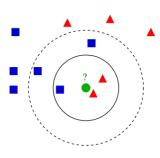
k-Nearest Neighbours

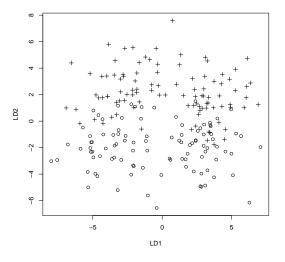
- Prediction at a data vector x is determined by the set ne_k(x) of k nearest neighbours of x among the training set.
- Classification: majority vote of the neighbours:

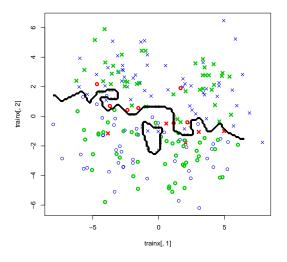
$$f_{\mathsf{kNN}}(x) = \underset{l}{\operatorname{argmax}} \ |\{j \in ne_{\mathsf{k}}(x) : y_j = l\}|.$$

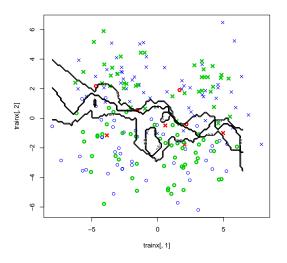
 Regression: average among the neighbours:

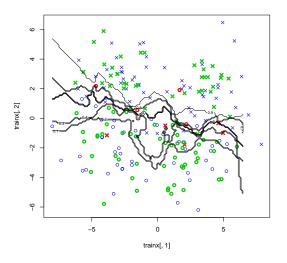
$$f_{\mathsf{kNN}}(x) = \frac{\sum_{j \in ne_{\mathsf{k}}(x)} y_j}{\mathsf{k}}.$$



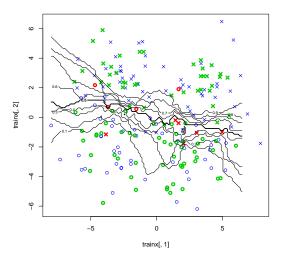




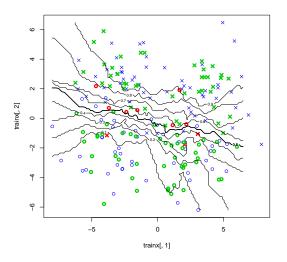


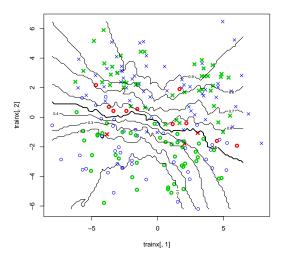


Result of 5NN

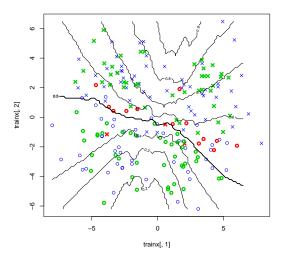


Result of 11NN





Result of 31NN



Result of 51NN

k-Nearest Neighbour Demo – R Code I

```
library (MASS)
## load crabs data
data(crabs)
ct <- as.numeric(crabs[.11)-1+2*(as.numeric(crabs[.21)-1)
## project to first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x \leftarrow as.matrix(cb.ldp$x[.1:21)
v <- as.numeric(crabs[,21)-1
x < -x + rnorm(dim(x)[1]*dim(x)[2])*1.5
eqscplot (x, pch=2*y+1, col=1)
       <- length(y)
#get training indices
i <- sample(rep(c(TRUE,FALSE),each=n/2),n,replace=FALSE)
kNN <- function(k,x,y,i,gridsize=100) {
         <- \dim(x)[2]
  train <- (1:n)[i]
 test <- (1:n)[!i]
  trainx <- x[train,]
 trainy <- v[train]
 testx <- x[test,]
 testy <- v[test]
  trainn <- dim(trainx)[1]
  testn <- dim(testx)[1]
 gridx1 \leftarrow seg(min(x[,1]), max(x[,2]), length=gridsize)
 gridx2 \leftarrow seg(min(x[,2]), max(x[,2]), length=gridsize)
 gridx <- as.matrix(expand.grid(gridx1,gridx2))</pre>
 gridn <- dim(gridx)[1]
```

k-Nearest Neighbour Demo – R Code II

```
# calculate distances
trainxx <- t((trainx*trainx) %*% matrix(1,p,1))
testxx <- (testx*testx) %*% matrix(1,p,1)
gridxx <- (gridx*gridx) %*% matrix(1,p,1)
testtraindist <- matrix(1.testn.1) %*% trainxx +
  testxx %*% matrix(1,1,trainn) -
  2*(testx %*% t(trainx))
gridtraindist <- matrix(1,gridn,1) %*% trainxx +
  gridxx %*% matrix(1,1,trainn) -
  2*(gridx %*% t(trainx))
# predict
testp <- numeric(testn)
gridp <- numeric(gridn)
for (i in 1:testn) {
  nearestneighbors <- order(testtraindist[j,])[1:k]
  testp[i] <- mean(trainv[nearestneighbors])
for (i in 1:gridn) {
  nearestneighbors <- order(gridtraindist[j,])[1:k]
  gridp[i] <- mean(trainv[nearestneighbors])
predy <- as.numeric(testp>.5)
plot(trainx[,1],trainx[,2],pch=trainy*3+1,col=4,1wd=.5)
points(testx[,1],testx[,2],pch=testy*3+1,col=2+(predy==testy),lwd=3)
contour (gridx1, gridx2, matrix (gridp, gridsize, gridsize),
        levels=seg(.1,.9,.1), lwd=.5, add=TRUE)
contour (gridx1, gridx2, matrix (gridp, gridsize, gridsize),
        levels=c(.5), lwd=2, add=TRUE)
```

Asymptotic Performance of 1NN

- Let $(x_i, y_i)_{i=1}^n$ be training data where $x_i \in \mathbb{R}^p$ and $y_i \in \{1, 2, ..., K\}$.
- We define

$$f_{\mathsf{Bayes}}\left(x
ight) := lpha \max_{l \in \{1, \dots, K\}} \pi_{l} g_{l}\left(x
ight),$$
 $f_{\mathsf{1NN}}^{(n)}\left(x
ight) := y_{j}, \mathsf{s.t.} \ x_{j} \ \mathsf{is} \ \mathsf{the} \ \mathsf{nearest} \ \mathsf{neigbour} \ \mathsf{of} \ x.$

The (optimal) Bayes risk and 1NN risk are:

$$\begin{array}{lcl} R_{\mathsf{Bayes}} & = & \mathbb{E}\left[\mathbf{1}\left(Y \neq f_{\mathsf{Bayes}}\left(X\right)\right)\right] \\ R_{\mathsf{1NN}}^{(n)} & = & \mathbb{E}\left[\mathbf{1}\left(Y \neq f_{\mathsf{1NN}}^{(n)}\left(X\right)\right)\right] \end{array}$$

• As $n \to \infty$, $R_{1NN}^{(n)} \to R_{1NN}$, where

$$R_{\mathsf{Bayes}} \leq R_{\mathsf{1NN}} \leq 2R_{\mathsf{Bayes}} - rac{K}{K-1}R_{\mathsf{Bayes}}^2.$$

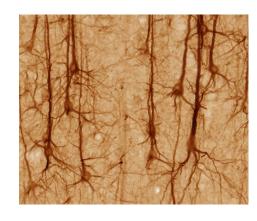
k-Nearest Neighbours - Discussion

- Simple and essentially model-free, i.e., weaker assumptions than LDA,
 Naïve Bayes and logistic regression.
- Not useful for understanding relationships between attributes and class predictions.
- Sensitive to the choice of distance and to the choice of k
- High computational cost:
 - Need to store all training data.
 - Need to compare each test data vector to all training data.
 - Need a lot of data in high dimensions.
- Mitigation: compute approximate nearest neighbours, using kd-trees, cover trees, random forests.

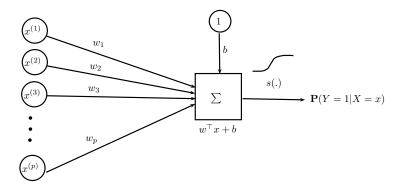
Artificial Neural Networks

Biological inspiration

- Basic computational elements: neurons.
- Receives signals from other neurons via dendrites.
- Sends processed signals via axons.
- Axon-dendrite interactions at synapses.
- $10^{10} 10^{11}$ neurons.
- $10^{14} 10^{15}$ synapses.
- Connectionist architecture: the network and its structure govern the computations performed.

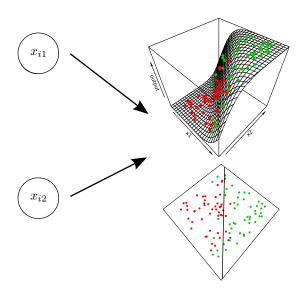


Single Neuron Classifier

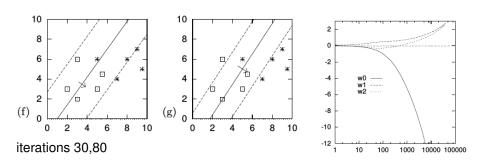


- activation $w^{T}x + b$ (linear in inputs x)
- activation/transfer function s gives the output/activity (potentially nonlinear in x)
- common nonlinear activation function $s(a) = \frac{1}{1+e^{-a}}$: logistic regression
- learn w and b via gradient descent

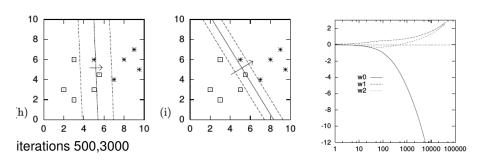
Single Neuron Classifier



Overfitting

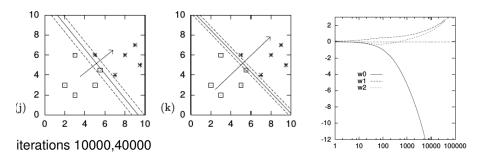


Overfitting



Overfitting

prevent overfitting by:



- early stopping: just halt the gradient descent
 - regularization: L₂-regularization called weight decay in neural networks literature.

Multilayer Networks

• Data vectors $x_i \in \mathbb{R}^p$, binary labels $y_i \in \{0, 1\}$.

• inputs x_{i1}, \ldots, x_{ip}

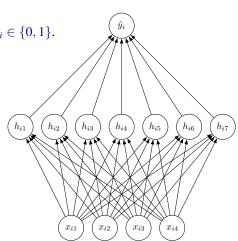
• output
$$\hat{y}_i = \mathbb{P}(Y = 1 | X = x_i)$$

- hidden unit activities h_{i1}, \ldots, h_{im}
 - Compute hidden unit activities:

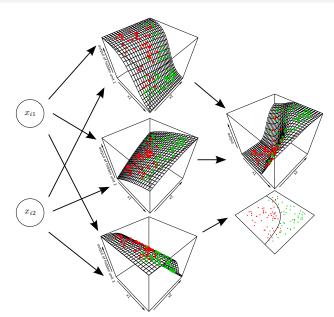
$$h_{il} = s \left(b_l^h + \sum_{j=1}^p w_{jl}^h x_{ij} \right)$$

Compute output probability:

$$\hat{y}_i = s \left(b^o + \sum_{l=1}^m w_k^o h_{il} \right)$$



Multilayer Networks



Training a Neural Network

• Objective function: L2-regularized log-loss

$$J = -\sum_{i=1}^{n} y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i) + \frac{\lambda}{2} \left(\sum_{jl} (w_{jl}^h)^2 + \sum_{l} (w_{l}^o)^2 \right)$$

where

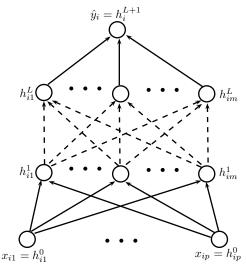
$$\hat{y}_i = s \left(b^o + \sum_{l=1}^m w_l^o h_{il} \right) \qquad h_{il} = s \left(b_l^h + \sum_{j=1}^p w_{jl}^h x_{ij} \right)$$

• Optimize parameters $\theta = \{b^h, w^h, b^o, w^o\}$, where $b^h \in \mathbb{R}^m$, $w^h \in \mathbb{R}^{p \times m}$, $b^o \in \mathbb{R}$, $w^o \in \mathbb{R}^m$ with gradient descent.

$$\begin{split} \frac{\partial J}{\partial w_l^o} &= \lambda w_l^o + \sum_{i=1}^n \frac{\partial J}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial w_l^o} = \lambda w_l^o + \sum_{i=1}^n (\hat{y}_i - y_i) h_{il}, \\ \frac{\partial J}{\partial w_{il}^h} &= \lambda w_{jl}^h + \sum_{i=1}^n \frac{\partial J}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial h_{il}} \frac{\partial h_{il}}{\partial w_{jl}^h} = \lambda w_{jl}^h + \sum_{i=1}^n (\hat{y}_i - y_i) w_l^o h_{il} (1 - h_{il}) x_{ij}. \end{split}$$

- L₂-regularization often called weight decay.
- Multiple hidden layers: Backpropagation algorithm

Multiple hidden layers

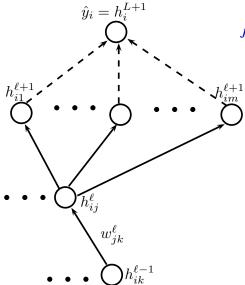


$$h_i^{\ell+1} = \underline{s} \left(W^{\ell+1} h_i^{\ell} \right)$$

- $W^{\ell+1} = \left(w_{jk}^{\ell}\right)_{jk}$: weight matrix at the $(\ell+1)$ -th layer, weight w_{jk}^{ℓ} on the edge between $h_{ik}^{\ell-1}$ and h_{ij}^{ℓ}
- <u>s</u>: entrywise (logistic) transfer function

$$\hat{y}_i = \underline{s} \left(W^{L+1} \underline{s} \left(W^L \left(\cdots \underline{s} \left(W^1 x_i \right) \right) \right) \right)$$

Backpropagation



$$J = -\sum_{i=1}^{n} y_i \log h_i^{L+1} + (1 - y_i) \log(1 - h_i^{L+1})$$

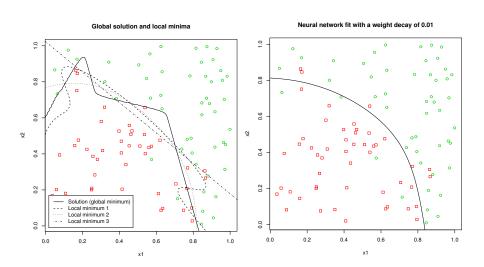
 Gradients wrt h^l_{ij} computed by recursive applications of chain rule, and propagated through the network backwards.

$$\frac{\partial J}{\partial h_i^{L+1}} = -\frac{y_i}{h_i^{L+1}} + \frac{1 - y_i}{1 - h_i^{L+1}}$$

$$\frac{\partial J}{\partial h_{ij}^{\ell}} = \sum_{r=1}^{m} \frac{\partial J}{\partial h_{ir}^{\ell+1}} \frac{\partial h_{ir}^{\ell+1}}{\partial h_{ij}^{\ell}}$$

$$\frac{\partial J}{\partial w_{jk}^{\ell}} = \sum_{i=1}^{n} \frac{\partial J}{\partial h_{ij}^{\ell}} \frac{\partial h_{ij}^{\ell}}{\partial w_{jk}^{\ell}}$$

Neural Networks



R package implementing neural networks with a single hidden layer: nnet.

Neural Networks - Discussion

- Nonlinear hidden units introduce modelling flexibility.
- In contrast to user-introduced nonlinearities, features are global, and can be learned to maximize predictive performance.
- Neural networks with a single hidden layer and sufficiently many hidden units can model arbitrarily complex functions.
- Optimization problem is **not convex**, and objective function can have many local optima, plateaus and ridges.
- On large scale problems, often use stochastic gradient descent, along with a whole host of techniques for optimization, regularization, and initialization.
- Recent developments, especially by Geoffrey Hinton, Yann LeCun, Yoshua Bengio, Andrew Ng and others. See also http://deeplearning.net/.