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Nonlinear and Nonparametric Methods Local smoothing and Nearest Neighbours

Nearest Neighbours

Nonlinear and Nonparametric Methods Local smoothing and Nearest Neighbours

Nonlinear Methods

Nonlinearity by data transformation: x 7→ ϕ(x) (explicit or implicit).
A global approach. Decision function and optimal parameters can
depend on training examples in the whole domain X .
Alternative approach: decision function f (x) depends only on instances in
the local neighbourhood of x.
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Smoothing kernels

Recall the plug-in generative classifier f (x) = argmaxl∈{1,...,K} π̂lĝl(x)
What if we do not want to assume that the true class-l conditional density
gl(x) takes any particular form (i.e., multivariate normal)?
Use a kernel density estimate

ĝl(x) =
1
nl

∑

i: yi=l

κ(x− xi)

smoothing (Parzen) kernel︸ ︷︷ ︸
local similarity

6= positive-semidefinite (Mercer) kernel︸ ︷︷ ︸
inner product between features
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Smoothing kernels

Kernel density estimate

ĝl(x) =
1
nl

∑

i: yi=l

κ(x− xi)

since π̂l =
nl
n , discrimination based on total similarity of x to instances in

each of the classes:

f (x) = argmax
l∈{1,...,K}

∑

i: yi=l

κ(x− xi)

Posterior class probabilities

P̂ (Y = l|X = x) =
π̂lĝl(x)∑K
j=1 π̂jĝj(x)

=

∑
i: yi=l κ(x− xi)∑n

j=1 κ(x− xj)
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k-Nearest Neighbours

Prediction at a data vector x is determined
by the set nek(x) of k nearest neighbours
of x among the training set.
Classification: majority vote of the
neighbours:

fkNN(x) = argmax
l

|{j ∈ nek(x) : yj = l}|.

Regression: average among the
neighbours:

fkNN(x) =

∑
j∈nek(x) yj

k
.

figure by A. Ajanki
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo
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k-Nearest Neighbour Demo – R Code I

library(MASS)
## load crabs data
data(crabs)
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)
## project to first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- as.matrix(cb.ldp$x[,1:2])
y <- as.numeric(crabs[,2])-1
x <- x + rnorm(dim(x)[1]*dim(x)[2])*1.5
eqscplot(x,pch=2*y+1,col=1)
n <- length(y)

#get training indices
i <- sample(rep(c(TRUE,FALSE),each=n/2),n,replace=FALSE)

kNN <- function(k,x,y,i,gridsize=100) {

p <- dim(x)[2]

train <- (1:n)[i]
test <- (1:n)[!i]
trainx <- x[train,]
trainy <- y[train]
testx <- x[test,]
testy <- y[test]

trainn <- dim(trainx)[1]
testn <- dim(testx)[1]

gridx1 <- seq(min(x[,1]),max(x[,2]),length=gridsize)
gridx2 <- seq(min(x[,2]),max(x[,2]),length=gridsize)
gridx <- as.matrix(expand.grid(gridx1,gridx2))
gridn <- dim(gridx)[1]
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k-Nearest Neighbour Demo – R Code II

# calculate distances
trainxx <- t((trainx*trainx) %*% matrix(1,p,1))
testxx <- (testx*testx) %*% matrix(1,p,1)
gridxx <- (gridx*gridx) %*% matrix(1,p,1)
testtraindist <- matrix(1,testn,1) %*% trainxx +

testxx %*% matrix(1,1,trainn) -
2*(testx %*% t(trainx))

gridtraindist <- matrix(1,gridn,1) %*% trainxx +
gridxx %*% matrix(1,1,trainn) -
2*(gridx %*% t(trainx))

# predict
testp <- numeric(testn)
gridp <- numeric(gridn)
for (j in 1:testn) {

nearestneighbors <- order(testtraindist[j,])[1:k]
testp[j] <- mean(trainy[nearestneighbors])

}
for (j in 1:gridn) {

nearestneighbors <- order(gridtraindist[j,])[1:k]
gridp[j] <- mean(trainy[nearestneighbors])

}
predy <- as.numeric(testp>.5)

plot(trainx[,1],trainx[,2],pch=trainy*3+1,col=4,lwd=.5)
points(testx[,1],testx[,2],pch=testy*3+1,col=2+(predy==testy),lwd=3)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),

levels=seq(.1,.9,.1),lwd=.5,add=TRUE)
contour(gridx1,gridx2,matrix(gridp,gridsize,gridsize),

levels=c(.5),lwd=2,add=TRUE)
}
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Asymptotic Performance of 1NN

Let (xi, yi)
n
i=1 be training data where xi ∈ Rp and yi ∈ {1, 2, ...,K}.

We define

fBayes (x) := arg max
l∈{1,...,K}

πlgl (x) ,

f (n)
1NN (x) := yj, s.t. xj is the nearest neigbour of x.

The (optimal) Bayes risk and 1NN risk are:

RBayes = E [1 (Y 6= fBayes (X))]

R(n)
1NN = E

[
1
(

Y 6= f (n)
1NN (X)

)]

As n→∞, R(n)
1NN → R1NN, where

RBayes ≤ R1NN ≤ 2RBayes −
K

K − 1
R2

Bayes.
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k-Nearest Neighbours – Discussion

Simple and essentially model-free, i.e., weaker assumptions than LDA,
Naïve Bayes and logistic regression.
Not useful for understanding relationships between attributes and class
predictions.
Sensitive to the choice of distance and to the choice of k
High computational cost:

Need to store all training data.
Need to compare each test data vector to all training data.
Need a lot of data in high dimensions.

Mitigation: compute approximate nearest neighbours, using kd-trees,
cover trees, random forests.

Nonlinear and Nonparametric Methods Artificial Neural Networks

Artificial Neural Networks

Nonlinear and Nonparametric Methods Artificial Neural Networks

Biological inspiration

Basic computational elements:
neurons.
Receives signals from other
neurons via dendrites.
Sends processed signals via
axons.
Axon-dendrite interactions at
synapses.
1010 − 1011 neurons.
1014 − 1015 synapses.
Connectionist architecture: the
network and its structure govern
the computations performed.
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Single Neuron Classifier

x
(1)

x
(2)

x
(3)

x
(p)

b

b

b

∑

w1

w2

w3

wp

s(.)

P(Y = 1|X = x)

1

b

w
⊤
x+ b

activation w>x + b (linear in inputs x)
activation/transfer function s gives the output/activity (potentially
nonlinear in x)
common nonlinear activation function s(a) = 1

1+e−a : logistic regression
learn w and b via gradient descent
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Single Neuron Classifier

xi1

xi2

Nonlinear and Nonparametric Methods Artificial Neural Networks

Overfitting

iterations 30,80

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms

prevent overfitting by:
early stopping: just halt the gradient descent
regularization: L2-regularization called weight decay in neural networks
literature.
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Overfitting

iterations 500,3000

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms

prevent overfitting by:
early stopping: just halt the gradient descent
regularization: L2-regularization called weight decay in neural networks
literature.
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Overfitting

iterations 10000,40000

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms

prevent overfitting by:
early stopping: just halt the gradient descent
regularization: L2-regularization called weight decay in neural networks
literature.
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Multilayer Networks

Data vectors xi ∈ Rp, binary labels yi ∈ {0, 1}.
inputs xi1, . . . , xip

output ŷi = P(Y = 1|X = xi)

hidden unit activities hi1, . . . , him

Compute hidden unit activities:

hil = s


bh

l +

p∑

j=1

wh
jlxij




Compute output probability:

ŷi = s

(
bo +

m∑

l=1

wo
khil

)

xi1 xi2 xi3 xi4

hi1 hi2 hi3 hi4 hi5 hi6 hi7

ŷi

Nonlinear and Nonparametric Methods Artificial Neural Networks

Multilayer Networks

xi1

xi2
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Training a Neural Network

Objective function: L2-regularized log-loss

J = −
n∑

i=1

yi log ŷi + (1− yi) log(1− ŷi) +
λ

2


∑

jl

(wh
jl)

2 +
∑

l

(wo
l )

2




where

ŷi = s

(
bo +

m∑

l=1

wo
l hil

)
hil = s


bh

l +

p∑

j=1

wh
jlxij




Optimize parameters θ =
{

bh,wh, bo,wo
}

, where bh ∈ Rm, wh ∈ Rp×m,
bo ∈ R, wo ∈ Rm with gradient descent.

∂J
∂wo

l
= λwo

l +
n∑

i=1

∂J
∂ŷi

∂ŷi

∂wo
l
= λwo

l +
n∑

i=1

(ŷi − yi)hil,

∂J
∂wh

jl
= λwh

jl +
n∑

i=1

∂J
∂ŷi

∂ŷi

∂hil

∂hil

∂wh
jl
= λwh

jl +
n∑

i=1

(ŷi − yi)wo
l hil(1− hil)xij.

L2-regularization often called weight decay.
Multiple hidden layers: Backpropagation algorithm
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Multiple hidden layers

ŷi = hL+1

i

b b b b b b
hL
i1 hL

im

b b b b b bh1
i1 h1

im

b b b

xi1 = h0
i1

xip = h0
ip

h`+1
i = s

(
W`+1h`i

)

W`+1 =
(
w`

jk

)
jk

: weight matrix at

the (`+ 1)-th layer, weight w`
jk on

the edge between h`−1
ik and h`ij

s: entrywise (logistic) transfer
function

ŷi = s
(
WL+1s

(
WL (· · · s

(
W1xi

))))

Nonlinear and Nonparametric Methods Artificial Neural Networks

Backpropagation

ŷi = hL+1

i

b b b
hℓ+1

i1 hℓ+1

im

hℓ
ij

hℓ−1

ik

wℓ
jk

b b b

b b b

b b b

J = −
n∑

i=1

yi log hL+1
i +(1−yi) log(1−hL+1

i )

Gradients wrt h`ij computed by
recursive applications of chain
rule, and propagated through the
network backwards.

∂J
∂hL+1

i

= − yi

hL+1
i

+
1− yi

1− hL+1
i

∂J
∂h`ij

=
m∑

r=1

∂J
∂h`+1

ir

∂h`+1
ir

∂h`
ij

∂J
∂w`

jk
=

n∑

i=1

∂J
∂h`

ij

∂h`ij
∂w`

jk
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Neural Networks
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Global solution and local minima
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Neural network fit with a weight decay of 0.01

R package implementing neural networks with a single hidden layer: nnet.

Nonlinear and Nonparametric Methods Artificial Neural Networks

Neural Networks – Discussion

Nonlinear hidden units introduce modelling flexibility.
In contrast to user-introduced nonlinearities, features are global, and can
be learned to maximize predictive performance.
Neural networks with a single hidden layer and sufficiently many hidden
units can model arbitrarily complex functions.
Optimization problem is not convex, and objective function can have
many local optima, plateaus and ridges.
On large scale problems, often use stochastic gradient descent, along
with a whole host of techniques for optimization, regularization, and
initialization.
Recent developments, especially by Geoffrey Hinton, Yann LeCun,
Yoshua Bengio, Andrew Ng and others. See also
http://deeplearning.net/.


