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Non-linear methods

@ Linear methods (LDA, logistic regression,
naive Bayes) are simple and effective
techniques to learn from data “to first order”.

@ To capture more intricate information from
data, non-linear methods are often needed: ° ]

e Explicit non-linear transformations x — ¢(x). .y D:L- g
o Local methods like KNN. L sl

@ Kernel methods: introduce non-linearities

through implicit non-linear transforms, often "
local in nature.
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slides based on Arthur Gretton’s Advanced Topics in Machine Learning course


http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html
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@ No linear classifier separates red from blue.
@ Linear separation after mapping to a higher dimensional feature space:

R2 M @V —x 5 o) = (2D @ 0@ cR3
S5 ( x X »(x) X
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Kernel SVM
@ Back to the dual C-SVM with explicit non-linear transformation x — ¢(x):
1 T : Yo aiyi =0
max Z @i = > UZZI a;oyyie(x;) ' p(xj)  subject to {O a<cC

° Suppose_p = 2, and we would like to introduce quadratic non-linearities,

.
o(x) = (17 N EORVRORV, RONCS (xm)z’ (x<2>)2)

Then
s@(xi)Tap(xj) -1 Jrzjc(l)x(l) +2x(2) (2) Jrzx(l)x(2)xj<l)x(2)

+ (x,( )> (xj( )) + (xi(z)) ( (2)) = (1+x x)*

@ Since only dot-products are needed in the objective function, non-linear
transform need not be computed explicitly - inner product between
features is often a simple function (kernel) of x; and x;:

k(xi, %) = @) " p(x) = (1 +x %)

@ Generally, m-order interactions can be implemented simply by

k(x;,x;) = (1 +x x;)™ (polynomial kernel).



Kernel SVM: Kernel trick

@ Kernel SVM with k(x;,x;). Non-linear transformation x — ¢(x) still present,
but implicit (coordinates of the vector ¢(x) are never computed).

{Z?—l a;yi =0

n n
1 .
mgx ;Ozi ~5 Z OliOéjYi)’jk(xivxj) subject to 0<a<C

ij=1

@ Prediction? f(x) = sign (w'¢(x) + b), where w = >, ayip(x;) and offset
b obtained from a margin support vector x; with «; € (0, C).
@ No need to compute w either! Just need

w!o(x) = Z aiyip(xi) p(x) = Z iyik(xi, x).
i=1 i=1
o Get offset from
b=y —w oly) =y — En: oiyik(xi, x;)
i=1
for any margin support-vector x; (o; € (0, C)).

@ Fitted a separating hyperplane in a high-dimensional feature space
without ever mapping explicitly to that space.



Kernel trick in general

@ In a learning algorithm, if only inner products x; x; are explicitly used,
rather than data items x;, x; directly, we can replace them with a kernel
function k(x;, x;) = (@(x;), ¢(x;)), where ¢(x) could be nonlinear, high-
and potentially infinite-dimensional features of the original data.

o Kernel ridge regression

Kernel PCA

Kernel K-means

Kernel FDA

® 6 ¢



.
Gram matrix

@ The Gram matrix is the matrix of dot-products, K; = ¢(x;) "o (x;).

— )" —

— )T —

@ Since K = ®® T, it is symmetric and positive semidefinite.

@ Recall: Gram matrix closely related to the distance matrix (MDS)

@ Assuming features are centred, the sample covariance of features is
oD,

@ Many kernel methods, e.g. kernel PCA, make use of the duality between
the Gram and the sample covariance matrix.



Kernel: an inner product between feature maps
Definition (kernel)

Let X be a non-empty set. A function k : X x X — R is a kernel if there
exists a Hilbert space and a map ¢ : X — # such that Vx,x' € X,

k(x,x') := (0(x),0(x')) 5, -

@ Almost no conditions on X (eg, X itself need not have an inner product,
e.g., documents).

@ Think of kernel as similarity measure between features
What are some simple kernels? E.g., for text documents? For images?

@ A single kernel can correspond to multiple sets of underlying features.

p)=x and @) =(x/V2 x/V2)



Positive semidefinite functions

If we are given a “measure of similarity” with two arguments, k(x,x’), how can
we determine if it is a valid kernel?

@ Find a feature map?

@ Sometimes not obvious (especially if the feature vector is infinite
dimensional)

@ A simpler direct property of the function: positive semidefiniteness.



Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function x : X x X — R is positive semidefinite if
Vn > 1, Y(ay,...a,) € R", Y(xy,...,x,) € X",

Z Z a;a;k(x;,x;) > 0.

i=1 j=1

@ Kernel k(x,y) := (¢(x), ¢(y)),, for a Hiloert space # is positive
semidefinite.

n

ZZaiq,-k(x,-,xj) = ZZ <ai<)0(xi)7aj90(x])>ﬂ

i=1 j=1 i=1 j=1

Z aip(xi)

2
> 0.

H



Positive semidefinite functions are kernels

Moore-Aronszajn Theorem
Every positive semidefinite function is a kernel for some Hilbert space H.

@ Often, H is a space of functions
(Reproducing kernel Hilbert space - RKHS)
Gaussian RBF kernel k(x,x") = exp (—217 ||lx — x'||2) has an infinite-
dimensional H with elements A(x) = Y7 | a;k(x;, x)
(recall that w ™ ¢(x) in SVM has exactly this form!).
1"
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Examples of kernels

Linear: k(x,x') = x"x'.
Polynomial: k(x,x') = (c +x"x')", c € R, m € N.
Gaussian RBF: k(x,x') = exp (72%/2 [lx — x’||2), v > 0.

Laplacian: k(x,x') = exp (—ﬁ [lx — x’II), v > 0.

[
+

Rational quadratic: k(x,x') = < ||x—x2||) ,a,y > 0.

20y

Brownian covariance: k(x,x') = 1 (||x||” + [|x]|” — [x — x'||7), v € [0,2].



New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)

Given o > 0 and k, k, and k, all kernels on X, then ok and k; + k, are kernels
onX.

To prove this, just check inner product definition. A difference of kernels may
not be a kernel (why?)

Lemma (Mappings between spaces)

Let X and X be sets, and define amap s : X — X. Define the kernel k on X .
Then the kernel k(s(x),s(x")) is a kernel on X.

Example: k(x,x') = x* (x')*.



New kernels from old: products

Lemma (Products of kernels are kernels)
Given k, on X, andk, on X,, then k; x k, is a kernel on X; x X,.

Proof.

Sketch for finite-dimensional spaces only. Assume #; corresponding to k; is
R™, and #, corresponding to k, is R". Define:

@ ki :=u'"vforuveR" (e.g.: kernel between two images)
@ ky:=plgforp,qcR" (e.g.: kernel between two captions)
Is the following a kernel?

K[(u,p); (v;q)] = ki x kz

(e.g. kernel between one image-caption pair and another)




New kernels from old: products

Proof.
(continued)

kik, = (u'v)(q¢"p)

where A :=pu', B := qv' (features of image-caption pairs)
Thus k&, is a valid kernel, since inner product between A, B € R"*" is

(A, B) = trace(AB").




Kernel Methods — Discussion

@ Kernel methods allows for very flexible and powerful machine learning
models.

@ Nonparametric method: parameter space (e.g., of parameter w in SVM)
can be infinite-dimensional

@ Kernels can be defined over more complex structures than vectors, e.g.
graphs, strings, images, probability distributions.

@ Computational cost at least quadratic in the number of observations,
often O(rn*) computation and O(rn*) memory (various approximations - hot
research topic!)

@ Further reading:

Bishop, Chapter 6.

UCL course by Arthur Gretton on Advanced Topics in Machine Learning.
Schélkopf and Smola, Learning with Kernels, 2001.

Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.



http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html
http://agbs.kyb.tuebingen.mpg.de/lwk/
http://www.gaussianprocess.org/gpml/
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