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Non-linear methods

Linear methods (LDA, logistic regression,
naïve Bayes) are simple and effective
techniques to learn from data “to first order”.
To capture more intricate information from
data, non-linear methods are often needed:

Explicit non-linear transformations x 7→ ϕ(x).
Local methods like kNN.

Kernel methods: introduce non-linearities
through implicit non-linear transforms, often
local in nature.
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Kernel Methods
slides based on Arthur Gretton’s Advanced Topics in Machine Learning course

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html
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XOR example
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No linear classifier separates red from blue.
Linear separation after mapping to a higher dimensional feature space:

R2 3
(

x(1) x(2)
)>

= x 7→ ϕ(x) =
(

x(1) x(2) x(1)x(2)
)> ∈ R3
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Kernel SVM

Back to the dual C-SVM with explicit non-linear transformation x 7→ ϕ(x):

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjϕ(xi)
>ϕ(xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C
Suppose p = 2, and we would like to introduce quadratic non-linearities,

ϕ(x) =

(
1,
√

2x(1),
√

2x(2),
√

2x(1)x(2),
(

x(1)
)2
,
(

x(2)
)2
)>

Then

ϕ(xi)
>ϕ(xj) = 1 + 2x(1)

i x(1)
j + 2x(2)

i x(2)
j + 2x(1)

i x(2)
i x(1)

j x(2)
j

+
(

x(1)
i

)2 (
x(1)

j

)2
+
(

x(2)
i

)2 (
x(2)

j

)2
= (1 + x>i xj)

2

Since only dot-products are needed in the objective function, non-linear
transform need not be computed explicitly - inner product between
features is often a simple function (kernel) of xi and xj:
k(xi, xj) = ϕ(xi)

>ϕ(xj) = (1 + x>i xj)
2

Generally, m-order interactions can be implemented simply by
k(xi, xj) = (1 + x>i xj)

m (polynomial kernel).
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Kernel SVM: Kernel trick

Kernel SVM with k(xi, xj). Non-linear transformation x 7→ ϕ(x) still present,
but implicit (coordinates of the vector ϕ(x) are never computed).

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk(xi, xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C

Prediction? f (x) = sign
(
w>ϕ(x) + b

)
, where w =

∑n
i=1 αiyiϕ(xi) and offset

b obtained from a margin support vector xj with αj ∈ (0,C).
No need to compute w either! Just need

w>ϕ(x) =
n∑

i=1

αiyiϕ(xi)
>ϕ(x) =

n∑
i=1

αiyik(xi, x).

Get offset from

b = yj − w>ϕ(xj) = yj −
n∑

i=1

αiyik(xi, xj)

for any margin support-vector xj (αj ∈ (0,C)).
Fitted a separating hyperplane in a high-dimensional feature space
without ever mapping explicitly to that space.
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Kernel trick in general

In a learning algorithm, if only inner products x>i xj are explicitly used,
rather than data items xi, xj directly, we can replace them with a kernel
function k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉, where ϕ(x) could be nonlinear, high-
and potentially infinite-dimensional features of the original data.

Kernel ridge regression
Kernel PCA
Kernel K-means
Kernel FDA
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Gram matrix

The Gram matrix is the matrix of dot-products, Kij = ϕ(xi)
>ϕ(xj).

K =



−− ϕ(x1)> −−
...

−− ϕ(xi)
> −−

...
−− ϕ(xn)> −−

 ·
 | | |
ϕ(x1) · · · ϕ(xj) · · · ϕ(xn)
| | |



Since K = ΦΦ>, it is symmetric and positive semidefinite.
Recall: Gram matrix closely related to the distance matrix (MDS)
Assuming features are centred, the sample covariance of features is
Φ>Φ.
Many kernel methods, e.g. kernel PCA, make use of the duality between
the Gram and the sample covariance matrix.
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Kernel: an inner product between feature maps

Definition (kernel)

Let X be a non-empty set. A function k : X × X → R is a kernel if there
exists a Hilbert space and a map ϕ : X → H such that ∀x, x′ ∈ X ,

k(x, x′) := 〈ϕ(x), ϕ(x′)〉H .

Almost no conditions on X (eg, X itself need not have an inner product,
e.g., documents).
Think of kernel as similarity measure between features

What are some simple kernels? E.g., for text documents? For images?

A single kernel can correspond to multiple sets of underlying features.

ϕ1(x) = x and ϕ2(x) =
(

x/
√

2 x/
√

2
)>
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Positive semidefinite functions

If we are given a “measure of similarity” with two arguments, k(x, x′), how can
we determine if it is a valid kernel?

1 Find a feature map?
Sometimes not obvious (especially if the feature vector is infinite
dimensional)

2 A simpler direct property of the function: positive semidefiniteness.



Nonlinear and Nonparametric Methods Kernel Methods

Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function κ : X × X → R is positive semidefinite if
∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajκ(xi, xj) ≥ 0.

Kernel k(x, y) := 〈ϕ(x), ϕ(y)〉H for a Hilbert space H is positive
semidefinite.

n∑
i=1

n∑
j=1

aiajk(xi, xj) =

n∑
i=1

n∑
j=1

〈aiϕ(xi), ajϕ(xj)〉H

=

∥∥∥∥∥
n∑

i=1

aiϕ(xi)

∥∥∥∥∥
2

H

≥ 0.



Nonlinear and Nonparametric Methods Kernel Methods

Positive semidefinite functions are kernels

Moore-Aronszajn Theorem

Every positive semidefinite function is a kernel for some Hilbert space H.

Often, H is a space of functions
(Reproducing kernel Hilbert space - RKHS)

Gaussian RBF kernel k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

has an infinite-

dimensional H with elements h(x) =
∑m

i=1 aik(xi, x)
(recall that w>ϕ(x) in SVM has exactly this form!).
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Examples of kernels

Linear: k(x, x′) = x>x′.
Polynomial: k(x, x′) = (c + x>x′)m, c ∈ R, m ∈ N.

Gaussian RBF: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

, γ > 0.

Laplacian: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖
)

, γ > 0.

Rational quadratic: k(x, x′) =

(
1 +
‖x−x′‖2

2αγ2

)−α
, α, γ > 0.

Brownian covariance: k(x, x′) = 1
2 (‖x‖γ + ‖x‖γ − ‖x− x′‖γ), γ ∈ [0, 2].
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New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)

Given α > 0 and k, k1 and k2 all kernels on X , then αk and k1 + k2 are kernels
on X .

To prove this, just check inner product definition. A difference of kernels may
not be a kernel (why?)

Lemma (Mappings between spaces)

Let X and X̃ be sets, and define a map s : X → X̃ . Define the kernel k on X̃ .
Then the kernel k(s(x), s(x′)) is a kernel on X .

Example: k(x, x′) = x2 (x′)2
.
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New kernels from old: products

Lemma (Products of kernels are kernels)

Given k1 on X1 and k2 on X2, then k1 × k2 is a kernel on X1 ×X2.

Proof.
Sketch for finite-dimensional spaces only. Assume H1 corresponding to k1 is
Rm, and H2 corresponding to k2 is Rn. Define:

k1 := u>v for u, v ∈ Rm (e.g.: kernel between two images)
k2 := p>q for p, q ∈ Rn (e.g.: kernel between two captions)

Is the following a kernel?

K [(u, p); (v, q)] = k1 × k2

(e.g. kernel between one image-caption pair and another)
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New kernels from old: products

Proof.
(continued)

k1k2 =
(
u>v

) (
q>p

)
= trace(u>vq>p)

= trace(pu>vq>)

= 〈A,B〉 ,

where A := pu>, B := qv> (features of image-caption pairs)
Thus k1k2 is a valid kernel, since inner product between A,B ∈ Rm×n is

〈A,B〉 = trace(AB>).
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Kernel Methods – Discussion

Kernel methods allows for very flexible and powerful machine learning
models.
Nonparametric method: parameter space (e.g., of parameter w in SVM)
can be infinite-dimensional
Kernels can be defined over more complex structures than vectors, e.g.
graphs, strings, images, probability distributions.
Computational cost at least quadratic in the number of observations,
often O(n3) computation and O(n2) memory (various approximations - hot
research topic!)
Further reading:

Bishop, Chapter 6.
UCL course by Arthur Gretton on Advanced Topics in Machine Learning.
Schölkopf and Smola, Learning with Kernels, 2001.
Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html
http://agbs.kyb.tuebingen.mpg.de/lwk/
http://www.gaussianprocess.org/gpml/
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