Non-linear methods

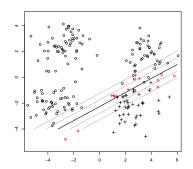
HT2015: SC4 Statistical Data Mining and Machine Learning

Dino Sejdinovic

Department of Statistics Oxford

http://www.stats.ox.ac.uk/~sejdinov/sdmml.html

- Linear methods (LDA, logistic regression, naïve Bayes) are simple and effective techniques to learn from data "to first order".
- To capture more intricate information from data, non-linear methods are often needed:
 - Explicit non-linear transformations $x \mapsto \varphi(x)$.
 - Local methods like kNN.
- Kernel methods: introduce non-linearities through implicit non-linear transforms, often local in nature.



Nonlinear and Nonparametric Methods

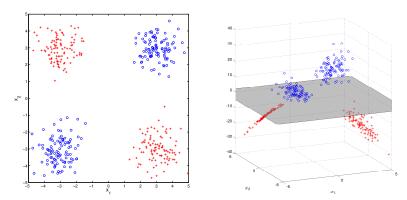
Kernel Methods

Nonlinear and Nonparametric Methods

Kernel Method

XOR example

slides based on Arthur Gretton's Advanced Topics in Machine Learning course



- No linear classifier separates red from blue.
- Linear separation after mapping to a higher dimensional feature space:

$$\mathbb{R}^2 \ni \left(\begin{array}{ccc} x^{(1)} & x^{(2)} \end{array} \right)^{\top} = x \ \mapsto \ \varphi(x) = \left(\begin{array}{ccc} x^{(1)} & x^{(2)} & x^{(1)}x^{(2)} \end{array} \right)^{\top} \in \mathbb{R}^3$$

Kernel SVM

• Back to the dual C-SVM with explicit non-linear transformation $x \mapsto \varphi(x)$:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(x_{i})^{\top} \varphi(x_{j}) \quad \text{subject to} \quad \begin{cases} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ 0 \leq \alpha \leq C \end{cases}$$

• Suppose p=2, and we would like to introduce quadratic non-linearities,

$$\varphi(x) = \left(1, \sqrt{2}x^{(1)}, \sqrt{2}x^{(2)}, \sqrt{2}x^{(1)}x^{(2)}, \left(x^{(1)}\right)^2, \left(x^{(2)}\right)^2\right)^\top$$

Then

$$\varphi(x_i)^{\top} \varphi(x_j) = 1 + 2x_i^{(1)} x_j^{(1)} + 2x_i^{(2)} x_j^{(2)} + 2x_i^{(1)} x_i^{(2)} x_j^{(1)} x_j^{(2)}$$

$$+ \left(x_i^{(1)}\right)^2 \left(x_j^{(1)}\right)^2 + \left(x_i^{(2)}\right)^2 \left(x_j^{(2)}\right)^2 = (1 + x_i^{\top} x_j)^2$$

- Since only dot-products are needed in the objective function, non-linear transform need not be computed explicitly - inner product between features is often a simple function (**kernel**) of x_i and x_i : $k(x_i, x_i) = \varphi(x_i)^{\top} \varphi(x_i) = (1 + x_i^{\top} x_i)^2$
- Generally, *m*-order interactions can be implemented simply by $k(x_i, x_i) = (1 + x_i^{\mathsf{T}} x_i)^m$ (polynomial kernel).

Nonlinear and Nonparametric Methods Kernel Methods

Kernel SVM: Kernel trick

• Kernel SVM with $k(x_i, x_i)$. Non-linear transformation $x \mapsto \varphi(x)$ still present, but **implicit** (coordinates of the vector $\varphi(x)$ are never computed).

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k(x_{i}, x_{j}) \quad \text{ subject to } \begin{cases} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ 0 \leq \alpha \leq C \end{cases}$$

- Prediction? $f(x) = \text{sign}\left(w^{\top}\varphi(x) + b\right)$, where $w = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)$ and offset b obtained from a margin support vector x_j with $\alpha_j \in (0, C)$.
 - No need to compute w either! Just need

$$w^{\top}\varphi(x) = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)^{\top} \varphi(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x).$$

Get offset from

$$b = y_j - w^{\top} \varphi(x_j) = y_j - \sum_{i=1}^{n} \alpha_i y_i k(x_i, x_j)$$

for any margin support-vector x_i ($\alpha_i \in (0, C)$).

• Fitted a separating hyperplane in a high-dimensional feature space without ever mapping explicitly to that space.

Nonlinear and Nonparametric Methods Kernel Methods

Kernel trick in general

- In a learning algorithm, if only inner products $x_i^{\top} x_i$ are explicitly used, rather than data items x_i , x_i directly, we can replace them with a kernel function $k(x_i, x_i) = \langle \varphi(x_i), \varphi(x_i) \rangle$, where $\varphi(x)$ could be **nonlinear**, **high**and potentially infinite-dimensional features of the original data.
 - Kernel ridge regression
 - Kernel PCA
 - Kernel K-means
 - Kernel FDA

Gram matrix

• The **Gram matrix** is the matrix of dot-products, $\mathbf{K}_{ii} = \varphi(x_i)^{\top} \varphi(x_i)$.

$$\mathbf{K} = \begin{pmatrix} -\varphi(x_1)^\top - \\ \vdots \\ -\varphi(x_i)^\top - \\ \vdots \\ -\varphi(x_n)^\top - \end{pmatrix} \cdot \begin{pmatrix} | & | & | \\ \varphi(x_1) & \cdots & \varphi(x_j) & \cdots & \varphi(x_n) \\ | & | & | \end{pmatrix}$$

- Since $\mathbf{K} = \Phi \Phi^{\top}$, it is symmetric and positive semidefinite.
- Recall: Gram matrix closely related to the distance matrix (MDS)
- Assuming features are centred, the sample covariance of features is
- Many kernel methods, e.g. kernel PCA, make use of the duality between the Gram and the sample covariance matrix.

Kernel: an inner product between feature maps

Definition (kernel)

Let \mathcal{X} be a non-empty set. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **kernel** if there exists a **Hilbert space** and a map $\varphi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$k(x, x') := \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}.$$

- Almost no conditions on \mathcal{X} (eg. \mathcal{X} itself need not have an inner product, e.g., documents).
- Think of kernel as similarity measure between features

What are some simple kernels? E.g., for text documents? For images?

• A single kernel can correspond to multiple sets of underlying features.

$$\varphi_1(x) = x$$
 and $\varphi_2(x) = \begin{pmatrix} x/\sqrt{2} & x/\sqrt{2} \end{pmatrix}^{\top}$

Positive semidefinite functions

If we are given a "measure of similarity" with two arguments, k(x, x'), how can we determine if it is a valid kernel?

- Find a feature map?
 - Sometimes not obvious (especially if the feature vector is infinite dimensional)
- 2 A simpler direct property of the function: positive semidefiniteness.

Nonlinear and Nonparametric Methods Kernel Methods

Nonlinear and Nonparametric Methods

Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive semidefinite if $\forall n \geq 1, \ \forall (a_1, \ldots a_n) \in \mathbb{R}^n, \ \forall (x_1, \ldots, x_n) \in \mathcal{X}^n,$

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j \kappa(x_i, x_j) \ge 0.$$

• Kernel $k(x,y) := \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}}$ for a Hilbert space \mathcal{H} is positive semidefinite.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_i \varphi(x_i), a_j \varphi(x_j) \rangle_{\mathcal{H}}$$
$$= \left\| \sum_{i=1}^{n} a_i \varphi(x_i) \right\|_{\mathcal{H}}^2 \ge 0.$$

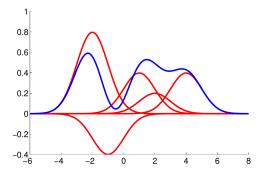
Positive semidefinite functions are kernels

Moore-Aronszajn Theorem

Every positive semidefinite function is a kernel for some Hilbert space \mathcal{H} .

• Often, \mathcal{H} is a space of functions (Reproducing kernel Hilbert space - RKHS)

Gaussian RBF kernel $k(x, x') = \exp\left(-\frac{1}{2\gamma^2} \|x - x'\|^2\right)$ has an infinitedimensional \mathcal{H} with elements $h(x) = \sum_{i=1}^{m} a_i k(x_i, x)$ (recall that $w^{\top}\varphi(x)$ in SVM has exactly this form!).



Examples of kernels

New kernels from old: sums, transformations

• Linear: $k(x, x') = x^{\top}x'$.

• Polynomial: $k(x, x') = (c + x^{T}x')^{m}, c \in \mathbb{R}, m \in \mathbb{N}.$

• Gaussian RBF: $k(x, x') = \exp\left(-\frac{1}{2\gamma^2} \|x - x'\|^2\right), \gamma > 0.$

• Laplacian: $k(x, x') = \exp\left(-\frac{1}{2\gamma^2} \|x - x'\|\right), \gamma > 0.$

• Rational quadratic: $k(x,x') = \left(1 + \frac{\|x-x'\|^2}{2\alpha\gamma^2}\right)^{-\alpha}$, $\alpha,\gamma > 0$.

• Brownian covariance: $k(x, x') = \frac{1}{2} (\|x\|^{\gamma} + \|x\|^{\gamma} - \|x - x'\|^{\gamma}), \gamma \in [0, 2].$

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)

Given $\alpha > 0$ and k, k_1 and k_2 all kernels on \mathcal{X} , then αk and $k_1 + k_2$ are kernels on \mathcal{X} .

To prove this, just check inner product definition. A difference of kernels may not be a kernel (why?)

Lemma (Mappings between spaces)

Let \mathcal{X} and $\widetilde{\mathcal{X}}$ be sets, and define a map $s: \mathcal{X} \to \widetilde{\mathcal{X}}$. Define the kernel k on $\widetilde{\mathcal{X}}$. Then the kernel k(s(x), s(x')) is a kernel on \mathcal{X} .

Example: $k(x, x') = x^2 (x')^2$.

Nonlinear and Nonparametric Methods

Kernel Methods

Nonlinear and Nonparametric Methods

ornal Mathada

New kernels from old: products

Lemma (Products of kernels are kernels)

Given k_1 on \mathcal{X}_1 and k_2 on \mathcal{X}_2 , then $k_1 \times k_2$ is a kernel on $\mathcal{X}_1 \times \mathcal{X}_2$.

Proof.

Sketch for finite-dimensional spaces only. Assume \mathcal{H}_1 corresponding to k_1 is \mathbb{R}^m , and \mathcal{H}_2 corresponding to k_2 is \mathbb{R}^n . Define:

• $k_1 := u^\top v$ for $u, v \in \mathbb{R}^m$ (e.g.: kernel between two images)

• $k_2 := p^{\top}q$ for $p, q \in \mathbb{R}^n$ (e.g.: kernel between two captions)

Is the following a kernel?

$$K[(u,p);(v,q)] = k_1 \times k_2$$

(e.g. kernel between one image-caption pair and another)

New kernels from old: products

Proof.

(continued)

$$k_1 k_2 = (u^{\top} v) (q^{\top} p)$$

$$= \operatorname{trace}(u^{\top} v q^{\top} p)$$

$$= \operatorname{trace}(p u^{\top} v q^{\top})$$

$$= \langle A, B \rangle,$$

where $A := pu^{\top}$, $B := qv^{\top}$ (features of image-caption pairs) Thus k_1k_2 is a valid kernel, since inner product between $A, B \in \mathbb{R}^{m \times n}$ is

$$\langle A, B \rangle = \operatorname{trace}(AB^{\top}).$$

Kernel Methods – Discussion

- Kernel methods allows for very flexible and powerful machine learning models.
- Nonparametric method: parameter space (e.g., of parameter w in SVM) can be infinite-dimensional
- Kernels can be defined over more complex structures than vectors, e.g. graphs, strings, images, probability distributions.
- Computational cost at least quadratic in the number of observations, often $O(n^3)$ computation and $O(n^2)$ memory (various approximations - hot research topic!)
- Further reading:
 - Bishop, Chapter 6.
 - UCL course by Arthur Gretton on Advanced Topics in Machine Learning.
 - Schölkopf and Smola, Learning with Kernels, 2001.
 - Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.