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Nonlinear and Nonparametric Methods Kernel Methods

Kernel Methods

slides based on Arthur Gretton’s Advanced Topics in Machine Learning course

Non-linear methods

@ Linear methods (LDA, logistic regression,
naive Bayes) are simple and effective I
techniques to learn from data “to first order”. e

@ To capture more intricate information from
data, non-linear methods are often needed: )

o Explicit non-linear transformations x — ¢(x). .| e, =",
@ Local methods like kNN. . ’

@ Kernel methods: introduce non-linearities

through implicit non-linear transforms, often "
local in nature.
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o

@ No linear classifier separates red from blue.
@ Linear separation after mapping to a higher dimensional feature space:

R25 (x(D) £ )T —x o ) =(x0 x@ DO )T c R?
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Kernel SVM
@ Back to the dual C-SVM with explicit non-linear transformation x — ¢(x):
u 1 " T . Z?:l a;y; = 0
max ;a, 3 ,»JZ_:I a;oyiyie(xi)  p(xj) subject to 0<a<C

@ Suppose p = 2, and we would like to introduce quadratic non-linearities,

plx) = (1 VX /2x@ /2502 ( (1))27()42))2)T

Then
o) Tp(x) =1+ 2)c(1 x; M 4 2x

() ) )

@ Since only dot-products are needed in the objective function, non-linear
transform need not be computed explicitly - inner product between
features is often a simple function (kernel) of x; and x;:

k(xi, %) = o(x) Tolx) = (1 +x x)?

@ Generally, m-order interactions can be implemented simply by

k(xi,x;) = (1 + x;" x;)™ (polynomial kernel).

Kernel trick in general

@) (2 2),.(1),(2)

+2x(1x X; x

= (1 +x xj)2

@ In a learning algorithm, if only inner products x," x; are explicitly used,
rather than data items x;, x; directly, we can replace them with a kernel
function k(x;, x;) = ((x;), ¢(x;)), where ¢(x) could be nonlinear, high-
and potentially infinite-dimensional features of the original data.

o Kernel ridge regression
o Kernel PCA

o Kernel K-means

o Kernel FDA

Kernel SVM: Kernel trick

@ Kernel SVM with k(x;, x;). Non-linear transformation x — ¢(x) still present,
but implicit (coordinates of the vector ¢ (x) are never computed).

n n
i—1 @iyi =0
max § a; — Z[—l
«
i—1

0<a=xC
@ Prediction? f(x) = sign (w'
b obtained from a margin support vector x; with o; €
@ No need to compute w either! Just need

x) = Zaiyi@(xt)TSO(x)

1 n
5 Z aiajyiy,k(xi,xj) subject to {

ij=1
©(x) +b), where w = 37| auyip(x;) and offset
(0,C).

= Z ayyik(xi, x)
i=1
o Get offset from
b=y —w () =y— Y ayiklx,x)
i=1
for any margin support-vector x; (o € (0, C)).

@ Fitted a separating hyperplane in a high-dimensional feature space
without ever mapping explicitly to that space.
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Gram matrix
@ The Gram matrix is the matrix of dot-products, K; = ¢(x;) " ().
— )" —
: | | |
K= [—¢b)" — 90(|xl) s@(|xj) 99(|xn)
— ‘P(xn)T -

@ Since K = ®® 7, it is symmetric and positive semidefinite.

@ Recall: Gram matrix closely related to the distance matrix (MDS)

@ Assuming features are centred, the sample covariance of features is
OO,

@ Many kernel methods, e.g. kernel PCA, make use of the duality between
the Gram and the sample covariance matrix.



Kernel: an inner product between feature maps

Definition (kernel)

Let X be a non-empty set. A functionk : X x X — R is a kernel if there
exists a Hilbert space and a map ¢ : X — # such that Vx,x’ € X,

k(x, x) = (p(x), o (x')) g -

@ Almost no conditions on X’ (eg, X itself need not have an inner product,
e.g., documents).

@ Think of kernel as similarity measure between features
What are some simple kernels? E.g., for text documents? For images?
@ A single kernel can correspond to multiple sets of underlying features.

w1(x) =x and wa(x) = ( x/\ﬁ x/ﬁ )T

Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function x : & x X — R is positive semidefinite if
Vn>1, Y(ai,...a,) € R V(xq,...,x,) € X",

Zn: Zn: aja;jk(x;, x;) > 0.

i=1 j=1

@ Kernel k(x,y) := {¢(x), ¢(y)),, for a Hilbert space H is positive
semidefinite.

n

Z Zaiajk(xi,xj) =

i=1 j=1

SO laie(x), arp(x)

i=1 j=1

n
> aip(x)
i=1

2
> 0.

H

Positive semidefinite functions

If we are given a “measure of similarity” with two arguments, &(x, x’), how can
we determine if it is a valid kernel?

@ Find a feature map?

@ Sometimes not obvious (especially if the feature vector is infinite
dimensional)

@ A simpler direct property of the function: positive semidefiniteness.

Positive semidefinite functions are kernels

Moore-Aronszajn Theorem
Every positive semidefinite function is a kernel for some Hilbert space #.

@ Often, H is a space of functions

(Reproducing kernel Hilbert space - RKHS)
Gaussian RBF kernel k(x, ') = exp (fﬁz Ix — x’||2> has an infinite-
dimensional # with elements i(x) = > | aik(x;, x)
(recall that w ' ¢(x) in SVM has exactly this form!).
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Examples of kernels

Linear: k(x,x') = x"x'.
Polynomial: k(x,x') = (c +x'x')",c € R, m € N.
Gaussian RBF: k(x, ') = exp (—T;z Ix — x’||2), v > 0.

Laplacian: k(x,x') = exp (—2;2 [lx — x’||), v > 0.

7112
=]

Rational quadratic: k(x,x") = (1 + ey ) , a,y > 0.

@ Brownian covariance: k(x,x’) = 1 (||x[|" + [[x]|" — [|x = x||), v € [0, 2].

New kernels from old: products

Lemma (Products of kernels are kernels)
Givenk, on X, and k, on X,, thenk, x k, is a kernel on X| x X.

Proof.

Sketch for finite-dimensional spaces only. Assume H,; corresponding to k; is
R™, and #, corresponding to k, is R". Define:

@ ki :=u'vforuveR" (e.g.: kernel between two images)
@ ky:=p'qforp,qgcR"(e.g.: kernel between two captions)
Is the following a kernel?

K([(u,p); (v;q)] = k1 x kz

(e.g. kernel between one image-caption pair and another)
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New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)

Given o > 0 and k, k; and k, all kernels on X, then ok and k, + k, are kernels
onX.

To prove this, just check inner product definition. A difference of kernels may
not be a kernel (why?)

Lemma (Mappings between spaces)

Let X and X be sets, and define amaps : X — X. Define the kernel k on X.
Then the kernel k(s(x), s(x")) is a kernel on X.

Example: k(x,x') = x2 (x')*.
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New kernels from old: products

Proof.
(continued)

kiky = (u'v)(q"p)
= trace(u' vq'p)
= trace(pu'vg")
= (AB),

where A :=pu', B :=qv' (features of image-caption pairs)
Thus &k, is a valid kernel, since inner product between A, B € R"*" is

(A,B) = trace(AB").




Kernel Methods — Discussion

@ Kernel methods allows for very flexible and powerful machine learning
models.

@ Nonparametric method: parameter space (e.g., of parameter w in SVM)
can be infinite-dimensional

@ Kernels can be defined over more complex structures than vectors, e.g.
graphs, strings, images, probability distributions.

@ Computational cost at least quadratic in the number of observations,
often O(rn*) computation and O(n?) memory (various approximations - hot
research topic!)

@ Further reading:

e Bishop, Chapter 6.

UCL course by Arthur Gretton on Advanced Topics in Machine Learning.
Schélkopf and Smola, Learning with Kernels, 2001.

Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.



