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Course Aims

1 Have ability to use the relevant R packages to analyse data, interpret
results, and evaluate methods.

2 Have ability to identify and use appropriate methods and models for given
data and task.

3 Understand the statistical theory framing machine learning and data
mining.

4 Able to construct appropriate models and derive learning algorithms for
given data and task.

Introduction Data Mining? Machine Learning?

What is Data Mining?

Oxford Dictionary

The practice of examining large pre-existing databases in order to generate
new information.

Encyclopaedia Britannica

Also called knowledge discovery in databases, in computer science, the
process of discovering interesting and useful patterns and relationships in
large volumes of data.

Introduction Data Mining? Machine Learning?

What is Machine Learning?

Arthur Samuel, 1959
Field of study that gives computers the ability to learn without being explicitly
programmed.

Tom Mitchell, 1997
Any computer program that improves its performance at some task through
experience.

Kevin Murphy, 2012

To develop methods that can automatically detect patterns in data, and
then to use the uncovered patterns to predict future data or other outcomes
of interest.

Introduction Data Mining? Machine Learning?

What is Machine Learning?

data

Information
Structure
Prediction
Decisions
Actions

http://gureckislab.org Larry Page about DeepMind’s ML systems that can learn to play video games like humans
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What is Machine Learning?

Machine 
Learning

statistics

computer
science

cognitive
science

psychology

mathematics

engineering
operations
research

physics

biology
genetics

business
finance

Introduction Data Mining? Machine Learning?

What is Data Science?

’Data Scientists’ Meld Statistics and Software WSJ article

Introduction Data Mining? Machine Learning?

Information Revolution

Traditional Problems in Applied Statistics

Well formulated question that we would like to answer.
Expensive data gathering and/or expensive computation.
Create specially designed experiments to collect high quality data.

Information Revolution
Improvements in data processing and data storage.
Powerful, cheap, easy data capturing.
Lots of (low quality) data with potentially valuable information inside.

Introduction Data Mining? Machine Learning?

Statistics and Machine Learning in the age of Big Data

ML becoming a thorough blending of computer science and statistics
CS and Stats forced back together: unified framework of data,
inferences, procedures, algorithms

statistics taking computation seriously
computing taking statistical risk seriously

scale and granularity of data
personalization, societal and business impact
multidisciplinarity - and you are the interdisciplinary glue
it’s just getting started

Michael Jordan: On the Computational and Statistical Interface and "Big Data"



Introduction Applications of Machine Learning

Applications of Machine Learning

spam filtering
recommendation

systems
fraud detection

self-driving cars
image recognition

stock market analysis

ImageNet: Krizhevsky et al, 2012

Introduction Applications of Machine Learning

Applications of Machine Learning

Automating employee access control
Protecting animals
Predicting emergency room wait times
Identifying heart failure
Predicting strokes and seizures
Predicting hospital readmissions

Machine Learning is Eating the World: Forbes article

Introduction Types of Machine Learning

Types of Machine Learning

Supervised learning

Data contains “labels”: every example is an input-output pair
classification, regression
Goal: prediction on new examples

Unsupervised learning

Extract key features of the “unlabelled” data
clustering, signal separation, density estimation
Goal: representation, hypothesis generation, visualization

Introduction Types of Machine Learning

Types of Machine Learning

Semi-supervised Learning

A database of examples, only a small subset of which are labelled.

Multi-task Learning

A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning

An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize their reward.



Visualisation and Dimensionality Reduction

Exploratory Data Analysis

Visualisation and Dimensionality Reduction Exploratory Data Analysis

Exploratory Data Analysis

Notation
Data consists of p measurements (variables/attributes) on n examples
(observations/cases)
X is a n× p-matrix with Xij := the j-th measurement for the i-th example

X =




x11 x12 . . . x1j . . . x1p

x21 x22 . . . x2j . . . x2p
...

...
. . .

...
. . .

...
xi1 xi2 . . . xij . . . xip
...

...
. . .

...
. . .

...
xn1 xn2 . . . xnj . . . xnp




Denote the ith data item by xi ∈ Rp. (This is transpose of ith row of X)
Assume x1, . . . , xn are independently and identically distributed
samples of a random vector X over Rp.

Visualisation and Dimensionality Reduction Exploratory Data Analysis

Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species, previously grouped by
colour: orange and blue. Preserved specimens lose their colour, so it was
hoped that morphological differences would enable museum material to be
classified.

Data are available on 50 specimens of each sex of each species, Each
specimen has measurements on:

the width of the frontal lobe FL,
the rear width RW,
the length along the carapace midline CL,
the maximum width CW of the carapace,
and
the body depth BD in mm.

in addition to colour (species) and sex.

photo from: inaturalist.org

Visualisation and Dimensionality Reduction Exploratory Data Analysis

Crabs Data

## load package MASS containing the data
library(MASS)

## look at raw data
crabs

## create a combined species+sex field
crabs$spsex=paste(crabs$sp,crabs$sex,sep="")

## assign predictor and class variables
varnames<-c(’FL’,’RW’,’CL’,’CW’,’BD’)
Crabs <- crabs[,varnames]
Crabs.class <- factor(crabs$spsex)

## various plots
boxplot(Crabs)
...



Visualisation and Dimensionality Reduction Exploratory Data Analysis

Crabs Data

## look at raw data
crabs

sp sex index FL RW CL CW BD
1 B M 1 8.1 6.7 16.1 19.0 7.0
2 B M 2 8.8 7.7 18.1 20.8 7.4
3 B M 3 9.2 7.8 19.0 22.4 7.7
4 B M 4 9.6 7.9 20.1 23.1 8.2
5 B M 5 9.8 8.0 20.3 23.0 8.2
6 B M 6 10.8 9.0 23.0 26.5 9.8
7 B M 7 11.1 9.9 23.8 27.1 9.8
8 B M 8 11.6 9.1 24.5 28.4 10.4
9 B M 9 11.8 9.6 24.2 27.8 9.7
10 B M 10 11.8 10.5 25.2 29.3 10.3
11 B M 11 12.2 10.8 27.3 31.6 10.9
12 B M 12 12.3 11.0 26.8 31.5 11.4
13 B M 13 12.6 10.0 27.7 31.7 11.4
14 B M 14 12.8 10.2 27.2 31.8 10.9
15 B M 15 12.8 10.9 27.4 31.5 11.0
16 B M 16 12.9 11.0 26.8 30.9 11.4
17 B M 17 13.1 10.6 28.2 32.3 11.0
18 B M 18 13.1 10.9 28.3 32.4 11.2
19 B M 19 13.3 11.1 27.8 32.3 11.3
20 B M 20 13.9 11.1 29.2 33.3 12.1

Visualisation and Dimensionality Reduction Exploratory Data Analysis

Univariate Boxplots

boxplot(Crabs)
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Visualisation and Dimensionality Reduction Exploratory Data Analysis

Univariate Boxplots

boxplot(RW~spsex,data=crabs); title(’RW: Rear Width (mm)’)
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Visualisation and Dimensionality Reduction Exploratory Data Analysis

Univariate Histograms
par(mfrow=c(2,3))
hist(Crabs$FL,col=’red’,breaks=20,xlab=’FL: Frontal Lobe Size (mm)’)
hist(Crabs$RW,col=’red’,breaks=20,xlab=’RW: Rear Width (mm)’)
hist(Crabs$CL,col=’red’,breaks=20,xlab=’CL: Carapace Length (mm)’)
hist(Crabs$CW,col=’red’,breaks=20,xlab=’CW: Carapace Width (mm)’)
hist(Crabs$BD,col=’red’,breaks=20,xlab=’BD: Body Depth (mm)’)

Histogram of Crabs$FL

FL: Frontal Lobe Size (mm)
F

re
q
u
e
n
c
y

10 15 20

0
5

1
0

1
5

2
0

Histogram of Crabs$RW

RW: Rear Width (mm)

F
re

q
u
e
n
c
y

6 8 10 14 18

0
5

1
0

1
5

Histogram of Crabs$CL

CL: Carapace Length (mm)

F
re

q
u
e
n
c
y

15 25 35 45

0
5

1
0

1
5

2
0

Histogram of Crabs$CW
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Simple Pairwise Scatterplots

pairs(Crabs,col=unclass(Crabs.class))
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Simple Pairwise Scatterplots
require(lattice)
splom(~ Crabs, groups = unclass(Crabs.class), key = list( columns = 4,
text = list(c("BM", "BF", "OM", "OF")),
points = Rows(trellis.par.get("superpose.symbol"), 1:4) ) )
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Visualization and Dimensionality Reduction

The summary plots are helpful, but do not help if the dimensionality p is high
(a few dozens or even thousands). Visualizing higher-dimensional problems:

We are constrained to view data in 2 or 3 dimensions
Approach: look for ‘interesting’ projections of X into lower dimensions
Hope that even though p is large, considering only carefully selected
k� p dimensions is just as informative.

Dimensionality reduction

For each data item xi ∈ Rp, find its lower dimensional representation
zi ∈ Rk with k� p.
Map x 7→ z should preserve the interesting statistical properties in
data.

Visualisation and Dimensionality Reduction Exploratory Data Analysis

Dimensionality Reduction



Visualisation and Dimensionality Reduction Principal Components Analysis

Dimensionality reduction

deceptively many variables to measure, many of them redundant (large p)
often, there is a simple but unknown underlying relationship hiding
example: ball on a frictionless spring recorded by three different cameras

our imperfect measurements obfuscate the true underlying dynamics
are our coordinates meaningful or do they simply reflect the method of data
gathering?

J. Shlens, A Tutorial on Principal Component Analysis, 2005

Visualisation and Dimensionality Reduction Principal Components Analysis

Principal Components Analysis (PCA)

PCA considers interesting directions to be those with greatest variance.
A linear dimensionality reduction technique: looks for a new basis to
represent a noisy dataset.
Workhorse for many different types of data analysis.
Often the first thing to run on high-dimensional data.

Visualisation and Dimensionality Reduction Principal Components Analysis

Principal Components Analysis (PCA)

For simplicity, we will assume from now
on that our dataset is centred, i.e., we
subtract the average x̄ from each xi.

PCA
Find an orthogonal basis v1, v2, . . . , vp for the data space such that:

The first principal component (PC) v1 is the direction of greatest
variance of data.
The j-th PC vj is the direction orthogonal to v1, v2, . . . , vj−1 of greatest
variance, for j = 2, . . . , p.

Visualisation and Dimensionality Reduction Principal Components Analysis

Principal Components Analysis (PCA)

The k-dimensional representation of data item xi is the vector of
projections of xi onto first k PCs:

zi = V>1:kxi =
[
v>1 xi, . . . , v>k xi

]> ∈ Rk,

where V1:k = [v1, . . . , vk]

Reconstruction of xi:
x̂i = V1:kV>1:kxi.

PCA gives the optimal linear reconstruction of the original data based
on a k-dimensional compression (exercises).



Visualisation and Dimensionality Reduction Principal Components Analysis

Principal Components Analysis (PCA)

Our data set is an i.i.d. sample {xi}n
i=1 of a random vector

X =
[
X(1) . . .X(p)

]>
.

For the 1st PC, we seek a derived scalar variable of the form

Z(1) = v>1 X = v11X(1) + v12X(2) + · · ·+ v1pX(p)

where v1 = [v11, . . . , v1p]> ∈ Rp are chosen to maximise

Var(Z(1)).

The 2nd PC is chosen to be orthogonal with the 1st and is computed in a
similar way. It will have the largest variance in the remaining p− 1
dimensions, etc.

Visualisation and Dimensionality Reduction Principal Components Analysis

Deriving the First Principal Component

for any fixed v1,

Var(Z(1)) = Var(v>1 X) = v>1 Cov(X)v1.

we do not know the true covariance matrix Cov(X), so need to replace
with the sample covariance matrix, i.e.

S =
1

n− 1

n∑

i=1

(xi − x̄)(xi − x̄)> =
1

n− 1

n∑

i=1

xix>i =
1

n− 1
X>X.

with no restriction on the norm of v1, Var(Z(1)) grows without a bound:
need constraint v>1 v1 = 1, giving

max
v1

v>1 Sv1

subject to: v>1 v1 = 1.

Visualisation and Dimensionality Reduction Principal Components Analysis

Deriving the First Principal Component

Lagrangian of the problem is given by:

L (v1, λ1) = v>1 Sv1 − λ1
(
v>1 v1 − 1

)
.

The corresponding vector of partial derivatives is

∂L(v1, λ1)

∂v1
= 2Sv1 − 2λ1v1.

Setting this to zero reveals the eigenvector equation Sv1 = λ1v1, i.e. v1
must be an eigenvector of S and the dual variable λ1 is the corresponding
eigenvalue.
Since v>1 Sv1 = λ1v>1 v1 = λ1, the first PC must be the eigenvector
associated with the largest eigenvalue of S.

Visualisation and Dimensionality Reduction Principal Components Analysis

Properties of the Principal Components

Derived scalar variable (projection to the j-th principal component)
Z(j) = v>j X has sample variance λj, for j = 1, . . . , p
S is a real symmetric matrix, so eigenvectors (principal components) are
orthogonal.
Projections to principal components are uncorrelated:
Cov(Z(i),Z(j)) ≈ v>i Svj = λjv>i vj = 0, for i 6= j.

The total sample variance is given by
∑p

i=1 Sii = λ1 + . . .+ λp, so the
proportion of total variance explained by the jth PC is λj

λ1+λ2+...+λp
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R code

This is what we have had before:

> library(MASS)
> crabs$spsex=paste(crabs$sp,crabs$sex,sep="")
> varnames<-c(’FL’,’RW’,’CL’,’CW’,’BD’)
> Crabs <- crabs[,varnames]
> Crabs.class <- factor(crabs$spsex)
> pairs(Crabs,col=unclass(Crabs.class))

Now perform PCA with function princomp.
(Alternatively, solve for the PCs yourself using eigen or svd)

> Crabs.pca <- princomp(Crabs,cor=FALSE)
> summary(Crabs.pca)
> pairs(predict(Crabs.pca),col=unclass(Crabs.class))

Visualisation and Dimensionality Reduction Principal Components Analysis

Exploring PCA output

> Crabs.pca <- princomp(Crabs,cor=FALSE)
> summary(Crabs.pca)

Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 11.8322521 1.135936870 0.997631086 0.3669098284 0.2784325016
Proportion of Variance 0.9824718 0.009055108 0.006984337 0.0009447218 0.0005440328
Cumulative Proportion 0.9824718 0.991526908 0.998511245 0.9994559672 1.0000000000

> loadings(Crabs.pca)

Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

FL -0.289 -0.323 0.507 0.734 0.125
RW -0.197 -0.865 -0.414 -0.148 -0.141
CL -0.599 0.198 0.175 -0.144 -0.742
CW -0.662 0.288 -0.491 0.126 0.471
BD -0.284 -0.160 0.547 -0.634 0.439

Visualisation and Dimensionality Reduction Principal Components Analysis

Raw Crabs Data

> pairs(Crabs,col=unclass(Crabs.class))
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PCA of Crabs Data
> Crabs.pca <- princomp(Crabs,cor=FALSE)
> pairs(predict(Crabs.pca),col=unclass(Crabs.class))
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PC 2 vs PC 3
> Z<-predict(Crabs.pca)
> plot(Comp.3~Comp.2,data=Z,col=unclass(Crabs.class))
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PCA on Face Images

http://vismod.media.mit.edu/vismod/demos/facerec/basic.html

Visualisation and Dimensionality Reduction Principal Components Analysis

PCA on European Genetic Variation

http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html

Visualisation and Dimensionality Reduction Principal Components Analysis

Comments on the use of PCA

PCA commonly used to project data X onto the first k PCs giving the
k-dimensional view of the data that best preserves the first two
moments.
Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.
Emphasis on variance is where the weaknesses of PCA stem from:

Assuming large variances are meaningful (high signal-to-noise ratio)
The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. In these cases, it is
recommended to calculate PCs from Corr(X) instead of Cov(X) (cor=True
in the call of princomp).
Lack of robustness to outliers: variance is affected by outliers and so are
PCs.


