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Chapter 9: Stein’s Paradox
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Stein’s paradox and the James-Stein Estimator
Stein’s paradox has been described as “the most striking theorem of
post-war mathematical statistics” (Efron, 1992).

Setup

Let Xi ∼ N(µi, 1), i = 1, 2, ..., p be jointly independent so we have one
data point for each of the p µi-parameters.

Let X = (X1, ..., Xp) and µ = (µ1, ..., µp). The goal is to estimate µ.
Consider µ̂MLE = X

I MLE

I MVUE

I Is it admissible? (for a quadratic loss function, say)

Recall that µ̂ is inadmissible if we can find µ̃ such that

R(µ, µ̂) ≥ R(µ, µ̃), ∀µ

with strict inequality for some µ.
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Stein’s paradox and the James-Stein Estimator

Answer:

If p ≥ 3, µ̂ is inadmissible for quadratic loss!

Theorem

An estimator with lower risk is given by the James-Stein estimator

µ̂JSE =

(
1− p− 2∑

iX
2
i

)
X
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Implications of Stein’s Paradox

Suppose we are interested in estimating

1. the weight of a randomly chosen loaf of bread from a supermarket.

2. the height of a random chosen blade of grass from a garden.

3. the speed of a randomly chosen car as it passes a speed camera.

These are totally unrelated quantities. It seem implausible that by
combining information across the data points that we might end up with a
better way of estimating the vector of three parameters.

The James-Stein estimator tells us that we can get a better estimate (on
average) for the vector of three parameters by simultaneously using the
three unrelated measurements.
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Proof

Consider the alternative estimator

µ̂JSE =

(
1− a∑

iX
2
i

)
X (the James-Stein estimator)

Note This estimator ‘shrinks’ X towards 0 (when
∑

iX
2
i > a).

We will show that if a = p− 2 then R(µ, µ̂JSE) < R(µ, µ̂MLE) for every
µ ∈ Rn, so that the MLE is inadmissible in this case.

First, the risk for µ̂MLE is

R(µ, µ̂MLE) =

p∑
i=1

E(|µi − µ̂MLE,i|2) =

p∑
i=1

E(|µi −Xi|2) = p

recognizing Var(Xi) = 1.
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Stein’s Lemma

Lemma (Stein’s Lemma)

For independent Normal RV X = (X1, . . . , Xp) ; Xi
ind∼ N (µi, 1)

E((Xi − µi)h(X)) = E
(
∂h(X)

∂Xi

)
.

This can be shown by integrating by parts. Noting if fi(x) = −e−(x−µi)2/2
then f ′i(x) = (x− µi)e−(x−µi)

2/2∫
(xi − µi)e−(xi−µi)

2/2dx = −e−(xi−µi)2/2
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Stein’s Lemma

∫
(xi − µi)e−(xi−µi)

2/2dx = −e−(xi−µi)2/2

and thus we have∫ ∞
−∞

(xi − µi)h(x)e−(xi−µi)
2/2dxi = −h(x)e−(xi−µi)

2/2
∣∣∣xi=∞
xi=−∞

+

∫ ∞
−∞

∂h(x)

∂xi
e−(xi−µi)

2/2dxi

The first term is zero if h(x) (for eg) is bounded, giving the lemma.

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 8 / 21



Stein’s Lemma

∫
(xi − µi)e−(xi−µi)

2/2dx = −e−(xi−µi)2/2

and thus we have∫ ∞
−∞

(xi − µi)h(x)e−(xi−µi)
2/2dxi = −h(x)e−(xi−µi)

2/2
∣∣∣xi=∞
xi=−∞

+

∫ ∞
−∞

∂h(x)

∂xi
e−(xi−µi)

2/2dxi

The first term is zero if h(x) (for eg) is bounded, giving the lemma.

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 8 / 21



Proof (continued)

R(µ, µ̂JSE) =

p∑
i=1

E(|µi − µ̂i|2) with µ̂i =

(
1− a∑

iX
2
i

)
Xi

E(|µi − µ̂i|2) = E(|µi −Xi|2)− 2aE

(
(Xi − µi)Xi∑

j X
2
j

)

+a2E

(
X2
i

(
∑

j X
2
j )2

)

E

(
(Xi − µi)Xi∑

j X
2
j

)
= E

(
∂

∂Xi

Xi∑
j X

2
j

)
Stein’s lemma

= E

(∑
j X

2
j − 2X2

i

(
∑

j X
2
j )2

)
= E

(
1∑
j X

2
j

− 2
X2
i

(
∑

j X
2
j )2

)
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Proof (continued)

Putting the pieces together,

p∑
i=1

E(|µi − µ̂i|2) = R(µ, µ̂MLE)− (2ap− 4a)E

(
1∑
j X

2
j

)

+a2E

(
1∑
j X

2
j

)

= p− (2a(p− 2)− a2)E

(
1∑
j X

2
j

)

and this is less than p if 2ap− 4a− a2 > 0 and in particular at a = p− 2,
which minimizes the risk over a ∈ R.

Note We have not shown that the James Stein estimator is itself
admissible.
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The risk of the James-Stein estimator

Remember R(µ, µ̂MLE) = p. When a = p− 2

If µi = 0⇒ Xi ∼ N(0, 1)⇒
∑

j X
2
j ∼ χ2

p ⇒ E
(

1∑
j X

2
j

)
= 1/(p− 2)

⇒ R(µ, µ̂JSE) = 2.

If µi = λ⇒ Xi = λ+ Zi where Zi ∼ N(0, 1) and
∑

j X
2
j ∼ λ2 + χ2

p

⇒ E
(

1∑
j X

2
j

)
→ 0 as λ→∞ so R(µ, µ̂JSE)→ p.

So we get a smaller difference between R(µ, µ̂MLE) and R(µ, µ̂JSE) as

E
(

1∑
j X

2
j

)
gets smaller.
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The risk of the James-Stein estimator

Geometrically, the James-Stein estimator shrinks each component of X
towards the origin shrinkage estimator).

There is nothing special about the origin. Fix µ0 ∈ Rp and define

µ̂
(µ0)
JSE = µ0 +

(
1− p− 2

‖X − µ0‖2

)
(X − µ0).

As R(µ̂
(µ0)
JSE , µ+ µ0) = R(µ̂JSE , µ), it is also strictly better than X.

Exercise A better estimator is X̄1p +
(

1− a
V

)
(X − X̄1p) where

V =
∑p

j−1(Xj − X̄)2 and 1p is p-dimensional vector of 1’s.
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Proof that R(µ̂
(µ0)
JSE, µ+ µ0) = R(µ̂JSE, µ)

Let us write Yi = Xi − µ0. If the parameter value is µ+ µ0 then
Yi ∼ N(µ, 1). Since

R(µ̂
(µ0)
JSE , µ+ µ0) = Eµ+µ0 [

(
µ−

(
1− p− 2

‖X − µ0‖2

)
(X − µ0)

)2

]

= Eµ[

(
µ−

(
1− p− 2

‖Y ‖2

)
Y

)2

]

= R(µ̂JSE , µ)
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The risk of the James-Stein estimator

Note that the shrinkage factor becomes negative when
‖X − µ0‖2 < p− 2. It can be shown that

µ̂
(µ0)
JSE+ = µ0 +

(
1− p− 2

‖X − µ0‖2

)
+

(X − µ0).

dominates strictly µ̂
(µ0)
JSE .

James Stein’s estimator is not admissible. Neither is µ̂
(µ0)
JSE+

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 14 / 21



The risk of the James-Stein estimator

Note that the shrinkage factor becomes negative when
‖X − µ0‖2 < p− 2. It can be shown that

µ̂
(µ0)
JSE+ = µ0 +

(
1− p− 2

‖X − µ0‖2

)
+

(X − µ0).

dominates strictly µ̂
(µ0)
JSE .

James Stein’s estimator is not admissible. Neither is µ̂
(µ0)
JSE+

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 14 / 21



The risk of the James-Stein estimator

Note that the shrinkage factor becomes negative when
‖X − µ0‖2 < p− 2. It can be shown that

µ̂
(µ0)
JSE+ = µ0 +

(
1− p− 2

‖X − µ0‖2

)
+

(X − µ0).

dominates strictly µ̂
(µ0)
JSE .

James Stein’s estimator is not admissible. Neither is µ̂
(µ0)
JSE+

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 14 / 21



Generalisation of James-Stein estimator

How crucial are the normality and square error loss assumptions?

1. Normality can be relaxed. Similar but more involved results hold for a
wide range of distributions.

2. Can be generalized to different loss functions but ...

3. Does not apply to losses such as L(θ̂, θ) = (θ̂1 − θ)2. (then we cant
improve on µ̂ = X)

The core principle is to employ shrinkage to reduce variance (at the
expense of introducing bias).
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The baseball example

Player ni Zi πi
Baines 415 0.284 0.289

Barfield 476 0.246 0.256

Bell 583 0.254 0.265

Biggio 555 0.276 0.287

Bonds 519 0.301 0.297

Bonilla 625 0.280 0.279

Brett 544 0.329 0.305

Brooks Jr. 568 0.266 0.269

Browne 513 0.267 0.271

ni = number of times at bat, Zi =
batting average during 1990 season,
πi = true batting average (overall
career average).
Model : Zi = n−1i Bin(ni, πi).
transform
Xi =

√
ni sin−1(2Zi − 1) ' N(θi, 1)

with θi =
√
ni sin−1(2πi − 1).

To see this

Xi − θi = g(Zi)− g(πi) ' g′(πi)(Zi − πi)

= =

√
ni(Zi − πi)√
πi(1− πi)

.
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The baseball example

So ‖X − θ‖2 = 2.56 < 9.
Using θ0 =

√
n̄ sin−1(2π0 − 1) with π0 = 0.275 we get

‖θ̂(θ0)JSE+ − θ‖
2 = 1.50.
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The baseball example 2

Yi = # home runs in pre-season, ni = # times at bat, pi = true
full-season strike rate.
Naive estimator is p̂i = Yi/ni.
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The baseball example 2

As before define fn(y) = n1/2 sin−1(2y − 1) and
Xi = fni(Yi/ni), θi = fni(pi). so that Xi ∼ N(θi, 1).
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The baseball example 2

Use the estimator

JSi = X̄ + (1− (p− 3)/V )(Xi − X̄)

where V = ‖X − X̄‖2 =
∑

(Xi − X̄)2 and X̄ = 1
p

∑
Xi. The true θi

must be clustered more closely around their mean than the Xi.∑
(Xi − θi)2 = 19.68 compared with

∑
(JSi − θi)2 = 8.07.
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The baseball example 2

HR is actual # of home runs in the whole season, ĤR is just the
extrapolation from the pre-season, ĤRs is the prediction based on the JS
estimator. It does better on aggregate.
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