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Chapter 8: Decision Theory
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Framework

Parameter space: Θ ⊂ Rd.
Model: X|θ ∼ f(x; θ) for some parametric family {f(x; θ), θ ∈ Θ}, taking
values in X .
Action (decision) space: A. Typical examples involve estimating g(θ)
(A = g(Θ)), or selecting a hypothesis (A = {0, 1}).
Loss function: L : Θ×A → R+. If we take action a ∈ A when the true
parameter is θ ∈ Θ then we incur the loss L(θ, a).
Set of decision rules: D ⊆ {δ : X → A}. Rule δ specifies an action for
each possible observed x ∈ X .
(Frequentist) Risk: For a given rule δ ∈ D and parameter θ ∈ Θ:

R(θ, δ) = EX|θ[L(θ, δ(X))] =

∫
X
L(θ, δ(x))f(x; θ)dx.
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Risk functions

I Risk R(θ, δ) is the expected loss of a decision rule δ assuming that
the true parameter is θ

I Note that the definition of risk involves hypothetical repetition of the
sampling mechanism that generated x

I The postulate of decision theory is that decision rules are compared
through their risk functions (as functions of θ)

I Fundamental principles for selecting among the decision rules are
Minimax and Bayes principles.
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Risk functions: examples

I Estimation example: δ(x) is an estimator of θ ∈ R, and we use
L(θ, a) = ‖a− θ‖2, so that R(θ, δ) = EX|θ‖δ(X)− θ‖2

I Testing example: We are testing θ ∈ H0 vs θ ∈ H1. Action space is
A = {0, 1} and the 0/1 loss is

L(θ, a) =


1, θ ∈ H0, a = 1,

1, θ ∈ H1, a = 0,

0, otherwise.

Here, the risk is simply the probability of making the wrong action

R(θ, δ) =

{
P(δ(X) = 1|θ), if θ ∈ H0,

P(δ(X) = 0|θ), if θ ∈ H1.

corresponding to the standard notions of Type I and Type II errors.
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Admissibility

Definition

We say that δ2 strictly dominates δ1 if

R(θ, δ1) ≥ R(θ, δ2), for all θ ∈ Θ

with R(θ, δ1) > R(θ, δ2) for at least some θ.

A procedure δ1 is inadmissible if there exists another procedure δ2 such
that δ2 strictly dominates δ1.

A procedure which is not inadmissible is admissible.
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Example
Suppose X ∼ U(0, θ). Consider estimators of the form θ̂(x) = ax (this is
a family of decision rules indexed by a).

Show that a = 3/2 is a necessary condition for the rule θ̂ to be admissible
for quadratic loss.

R(θ, θ̂) =

∫ θ

0
(ax− θ)2 1

θ
dx

= (a2/3− a+ 1)θ2

and R is minimized at a = 3/2.

This does not show θ̂(x) = 3x/2 is admissible here.

It only shows that all estimators with a 6= 3/2 are inadmissible. The
estimator θ̂(x) = 3x/2 may still be inadmissible relative to other
estimators not in this class!

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 7 / 24



Example
Suppose X ∼ U(0, θ). Consider estimators of the form θ̂(x) = ax (this is
a family of decision rules indexed by a).

Show that a = 3/2 is a necessary condition for the rule θ̂ to be admissible
for quadratic loss.

R(θ, θ̂) =

∫ θ

0
(ax− θ)2 1

θ
dx

= (a2/3− a+ 1)θ2

and R is minimized at a = 3/2.

This does not show θ̂(x) = 3x/2 is admissible here.

It only shows that all estimators with a 6= 3/2 are inadmissible. The
estimator θ̂(x) = 3x/2 may still be inadmissible relative to other
estimators not in this class!

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 7 / 24



Example
Suppose X ∼ U(0, θ). Consider estimators of the form θ̂(x) = ax (this is
a family of decision rules indexed by a).

Show that a = 3/2 is a necessary condition for the rule θ̂ to be admissible
for quadratic loss.

R(θ, θ̂) =

∫ θ

0
(ax− θ)2 1

θ
dx

= (a2/3− a+ 1)θ2

and R is minimized at a = 3/2.

This does not show θ̂(x) = 3x/2 is admissible here.

It only shows that all estimators with a 6= 3/2 are inadmissible. The
estimator θ̂(x) = 3x/2 may still be inadmissible relative to other
estimators not in this class!

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 7 / 24



Example
Suppose X ∼ U(0, θ). Consider estimators of the form θ̂(x) = ax (this is
a family of decision rules indexed by a).

Show that a = 3/2 is a necessary condition for the rule θ̂ to be admissible
for quadratic loss.

R(θ, θ̂) =

∫ θ

0
(ax− θ)2 1

θ
dx

= (a2/3− a+ 1)θ2

and R is minimized at a = 3/2.

This does not show θ̂(x) = 3x/2 is admissible here.

It only shows that all estimators with a 6= 3/2 are inadmissible. The
estimator θ̂(x) = 3x/2 may still be inadmissible relative to other
estimators not in this class!

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 7 / 24



Example
Suppose X ∼ U(0, θ). Consider estimators of the form θ̂(x) = ax (this is
a family of decision rules indexed by a).

Show that a = 3/2 is a necessary condition for the rule θ̂ to be admissible
for quadratic loss.

R(θ, θ̂) =

∫ θ

0
(ax− θ)2 1

θ
dx

= (a2/3− a+ 1)θ2

and R is minimized at a = 3/2.

This does not show θ̂(x) = 3x/2 is admissible here.

It only shows that all estimators with a 6= 3/2 are inadmissible. The
estimator θ̂(x) = 3x/2 may still be inadmissible relative to other
estimators not in this class!

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 7 / 24



Comments on admissibility

I It is a weak requirement (defined as an absence of negative attribute
rather than a posession of positive one).

I We will see later in the course that some natural looking estimators
are inadmissible (Stein phenomenon).
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Minimax rules

Definition

A rule δ is a minimax rule if supθ R(θ, δ) ≤ supθ R(θ, δ′) for any other rule
δ′. It minimizes the maximum risk.

δ∗ = arg min
δ∈D

sup
θ∈Θ

R(θ, δ).

Motivation: we do not know anything about the true θ, so we insure
ourselves against the worst possible case.
It makes sense when the worst case scenario must be avoided, but can lead
to poor performance on average.
Defines an order on decision rules, using a conservative point of view.
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Sometimes minimax does not produce a sensible choice of decision rule.
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Bayes rules

Specify a prior π(θ) and introduce the Bayes (integrated) risk:

r(π, δ) =

∫
Θ
R(θ, δ)π(θ)dθ.

A decision rule δ is said to be a Bayes rule wrt π if it minimizes the Bayes
risk:

r(π, δ) = inf
δ′∈D

r(π, δ′) =: mπ

If the infimum is not attained, we can consider ε > 0 and δε such that
r(π, δ) < mπ + ε. In this case δε is said to be ε-Bayes wrt π.
A rule δ is said to be extended Bayes if ∀ε > 0 there exists some π such
that δ is ε-Bayes wrt π.
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Are Bayes rules admissible ?

Definition (π-admissibility)

A procedure δ∗ is said to be π-admissible iff for all other procedure δ, such
that R(θ, δ) ≤ R(θ, δ∗) for all θ,

π (Aδ) = 0,

where Aδ := {θ : R(θ, δ) < R(θ, δ∗)}.

Theorem

The rule which is Bayes wrt π is π-admissible.
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Proof

If Bayes rule δπ is not π-admissible then ∃δ, s.t. π (Aδ) > 0. Then

r(π, δ)− r(π, δπ) =

∫
Aδ

[R(θ, δ)−R(θ, δπ)]π(θ)dθ

+

∫
Acδ

[R(θ, δ)−R(θ, δπ)]π(θ)dθ

≤
∫
Aδ

[R(θ, δ)−R(θ, δπ)]︸ ︷︷ ︸
<0

π(θ)dθ < 0

which contradicts δπ being Bayes.
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From the proof we see that Bayes rules are easily admissible.
For instance

1. If δπ is unique almost surely and r(π, δπ) < +∞ then it is admissible

2. If ∀δ, θ → R(θ, δ) is continuous, r(π, δπ) < +∞ and π has a positive
density wrt Lebesgue measure then δπ is admissible.
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Proofs

Proof of (1) If it is not admissible then ∃δ s.t. R(θ, δ) ≤ R(θ, δπ) for all θ.
This implies that

r(π, δ) ≤ r(π, δπ) ⇒ δ = δπ a.s.

Proof of (2) If not admissible, then ∃δ s.t. R(θ, δ) ≤ R(θ, δπ) for all θ
and Aδ 6= ∅. Since θ → R(θ, δ)−R(θ, δπ) is continuous then Aδ contains
an open ( 6= ∅) set and π(Aδ) > 0, which is impossible.
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Randomized decision rules

Suppose we have a collection of l decision rules d1, . . . , dl.For probability
weights p1, . . . , pl define d∗ to be the rule ‘select rule di with probability pi
and apply’.

Definition

d∗ is a randomized decision rule.

The risk function of a randomized decision rule is then

R(θ, d∗) =

l∑
i=1

piR(θ, di).

Minimax rules may be of this form.
Bayes rules are not randomized (if unique).
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Finite decision problem

Definition

A decision problem is said to be finite when the parameter space
Θ = {θ1, . . . , θk} is finite.

In this case the notions of admissible, minimax and Bayes can be given
geometric interpretations.

Definition

The risk set S ⊂ Rk is the set of
points (R(θ1, d), . . . R(θk, d)) for
some decision rule d.

Lemma

S is a convex set.
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Finite decision problem

1. Extreme points =
non-randomized rules.

2. Lower thick line= admissible
rules.

3. Minimax is intersection with the
square max(R1, R2) = c. In this
case with line R1 = R2 .
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Finite decision problem

To find the Bayes rule; suppose prior is (π1, π2). For any c the line
π1R1 + π2R2 = c represents a class of decision rules with same Bayes risk
c.

The Bayes rules is unique and
therefore non-random
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To find the Bayes rule; suppose prior is (π1, π2). For any c the line
π1R1 + π2R2 = c represents a class of decision rules with same Bayes risk
c.

The Bayes rules is unique and
therefore non-random

How the prior influences the Bayes
rule.
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An important inequality

Theorem

Let P the set of all probability measures on Θ. Then

sup
π∈P

r(π) ≤ inf
δ∈D

sup
θ∈Θ

R(θ, δ) := R̄

with r(π) = r(π, δπ) and δπ is the associated Bayes rule.

Proof Let π ∈ P then for all rules δ:

r(π, δπ) ≤ r(π, δ) =

∫
Θ
R(θ, δ)π(θ)dθ ≤ sup

Θ
R(θ, δ).

Hence
r(π) ≤ R̄ ∀π ∈ P.
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Finding minimax rules that are Bayes

Theorem 1 If δ is a Bayes rule for prior π, with r(π, δ) = C, and δ0 is a
rule for which maxθ R(θ, δ0) = C, then δ0 is minimax.

Proof If for some other rule δ′, maxθ R(θ, δ′) = C − ε for some ε > 0 (so
δ0 is not minimax), then

r(π, δ′) =

∫
R(θ, δ′)π(θ)dθ

≤
∫

(C − ε)π(θ)dθ

= (C − ε)
< r(π, δ)

so δ is not the Bayes rule for π, a contradiction. [This is an informal
treatment which assumes the min and max exist - see Y&S Ch 2 Sec 2.6]
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Finding minimax rules

Theorem 2 If δ is a Bayes rule for prior π with the property that R(θ, δ)
does not depend on θ, then δ is minimax.

Proof (Y&S Ch 2) Let R(θ, δ) = C (no θ dependence). This implies

r(π, δ) =

∫
R(θ, δ)π(θ)dθ = C.

If for some other rule δ′, maxθ R(θ, δ′) = C − ε for some ε > 0 (so δ0 is
not minimax), then we have r(π, δ′) ≤ C − ε. But r(π, δ) = C so δ is not
the Bayes rule for π, a contradiction.
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not minimax), then we have r(π, δ′) ≤ C − ε. But r(π, δ) = C so δ is not
the Bayes rule for π, a contradiction.
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Finding minimax rules

Theorem 2 tells us that

The Bayes estimator with constant risk is minimax.

This result is useful, as it gives an approach to finding minimax rules.

Bayes rules are sometimes easy to compute, so if we find a prior that yields
a Bayes rule with constant risk for all θ we have the minimax rule.
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Example : minimax estimator for quadratic loss
X is Binomial (n, θ), and the prior π(θ) is a Beta (α, β) distribution. For
a quadratic loss function, the Bayes estimator is (α+X)/(α+ β + n)

The risk function is

EX|θ[(θ̂ − θ)2] = MSE(θ̂) = [Bias(θ̂)]2 + Var[θ̂]

=

[
θ − E

(
α+X

α+ β + n

)]2

+ Var

[
α+X

α+ β + n

]
=

[
θ −

(
α+ nθ

α+ β + n

)]2

+
nθ(1− θ)

(α+ β + n)2

=
[θ(α+ β)− α]2 + nθ(1− θ)

[α+ β + n]2

The Bayes estimator with constant risk is minimax. This occurs when
α = β =

√
n/2, so the minimax estimator using quadratic loss is

(α+ x)/(α+ β + n) = (x+
√
n/2)/(n+

√
n). This estimator is also

admissible
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