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Chapter 7: Prior Distributions and
Predictive Distributions
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Constructing priors

Subjective Priors: Write down a distribution representing prior knowledge
about the parameter before the data is available. If possible, build a model
for the parameter. If different scientists have different priors or it is unclear
how to represent prior knowledge as a distribution, then consider several
different priors. Repeat the analysis and check that conclusions are
insensitive to priors representing ’different points of view’.
Non-Subjective Priors: Several approaches offer the promise of an
’automatic’ and even ’objective’ prior. We list some suggestions below
(Jeffreys, MaxEnt). They can be used in context of small or non reliable
prior information or as references. These approaches can also be useful to
complete the specification of a prior distribution, once subjective
considerations have been taken into account.
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Conjugate priors

Definition

Consider a sampling model f(X; θ), θ ∈ Θ for observables X. We say that
a family of prior distributions (πγ , γ ∈ Γ) is conjuguate if for all γ ∈ Γ and
all x ∈ X , there exists γ(x) such that

πγ(·|x) = πγ(x)(·)
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Example : Normal distribution when the mean and
variance are unknown.

X = (X1, · · · , Xn), Xi
iid∼ N (µ, σ2), τ = 1/σ2, θ = (τ, µ)

τ is called the precision.
Prior

[µ|σ2] ∼ N (ν, κσ2), τ ∼ Γ(α, β), ν ∈ R

The prior is

π(τ, µ) =
βα

Γ(α)
τα−1e−βτ · (2πκ)−1/2τ1/2 exp

{
− τ

2κ
(µ− ν)2

}
or

π(τ, µ) ∝ τα−1/2 exp

[
−τ
{
β +

1

2κ
(µ− ν)2

}]
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Normal example - la suite

The likelihood is

f(x | µ, τ) = (2π)−n/2τn/2 exp

{
−τ

2

n∑
i=1

(xi − µ)2

}

Thus

π(τ, µ | x) ∝ τα+(n/2)−1/2 exp

[
−τ

{
β +

1

2κ
(µ− ν)2 +

1

2

n∑
i=1

(xi − µ)2

}]

Complete the square to see that

(µ− ν)2/κ+
∑

(xi − µ)2

= (κ−1 + n)

(
µ− κ−1ν + nx̄

κ−1 + n

)2

+
n

nκ+ 1
(x̄− ν)2 +

∑
(xi − x̄)2
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Example Normal - the end

Thus the posterior is

π(τ, µ | x) ∝ τα′−1/2 exp

[
−τ
{
β′ +

1

2κ′
(ν ′ − µ)2

}]
where

α′ = α+
n

2
, κ′ = (nκ+ 1)/n, ν ′ =

κ−1ν + nx̄

κ−1 + n

β′ = β +
1

2
· n

nκ+ 1
(x̄− ν)2 +

1

2

∑
(xi − x̄)2

This is the same form as the prior, so the class is conjugate.
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Marginalisation : posterior on µ

If we are interested in the posterior distribution of µ alone

π(µ|x) =

∫
π(τ, µ|x)dτ

∝
∫ ∞

0
τα
′−1/2 exp

[
−τ
{
β′ +

1

2κ′
(ν ′ − µ)2

}]
dτ

We recognize a Γ(α′ + 1/2, β′ + (ν ′ − µ)2/(2κ′) for τ so that

π(µ|x) ∝ (2β′+(ν ′−µ)2/κ′)−(α′+1/2) ≡ Student (α′+1/2, ν ′, (2β′κ′)−1)
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Conjugate priors for Exponential Families

f(x | θ) = exp


k∑
j=1

Aj(θ)

n∑
i=1

Bj(xi) +

n∑
i=1

C(xi) + nD(θ)


The following family of priors is conjugate:

πτ (θ) ∝ exp{τ0D(θ) +

k∑
j=1

Aj(θ)τj}

where τ = (τ0, . . . , τk) are constant prior parameters
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Priors for Exponential Families

The posterior density is proportional to

f(x | θ)π(θ | τ0, . . . , τk)

∝ exp


k∑
j=1

Aj(θ)

[
n∑
i=1

Bj(xi) + τj

]
+ (n+ τ0)D(θ)


This is an updated form of the prior with

B′j(x) =

n∑
i=1

Bj(xi) + τj

n′ = n+ τ0
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Priors for Exponential Families: Example

X1, X2, . . . iid Poisson(θ).

p(y|θ) ∝ e−nθθt(y), t(y) =

n∑
i=1

yi.

Exponential with natural parameter φ(θ) = log θ. D(θ) = −nθ so that the
natural conjugate distribution

π(θ) ∝ e−βθ+(α−1) log θ.

Gamma density with parameters (α, β).
Exercise: check that p(θ|y) ∼ Gamma(α+ nȳ, β + n).
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About conjugate priors

I They are mathematically practical

I They are not justified on other grounds – but in some cases
mathematical ease is important

I It is often easy to interpret the hyper parameters
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Improper priors
In the Bayesian paradigme

[X|θ] ∼ f(x; θ), θ ∼ π

both are probability densities
We can generalize

Definition

We say that a prior distribution is improper if its mass is infinite∫
Θ
π(θ)dθ = +∞, π(θ) ≥ 0

The posterior distribution is defined as soon as∫
Θ
f(x; θ)π(θ)dθ < +∞, almost surely in x
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Examples

I Gaussian + Lebesgue measure exercise:

X ∼ N (µ, 1), π(µ) = 1

I X ∼ B(n, p) and π(p) = [p(1− p)]−1 : Haldane prior . Although it is
used in some cases the posterior is not well defined.

π(p|x) ∝ px−1(1− p)n−x−1 improper if x = 0 or x = n

and for all p ∈]0, 1[

P(X = 0|p) + P(X = n|p) > 0

Remark general case : if X is a discrete distribution then one cannot use
an improper prior Exercise : prove it
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Non-informative priors

When do we want to use noninformative priors ?
There are cases where there is little or no prior information - at least on
some aspects of the parameters.
How can we then choose a prior?
Useful to determine automatic procedures so that the choice becomes less
arbitrary.
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Uniform priors - a näıve choice

Laplace’s principle of insufficient reason: we do not have a reason to think
that one value of θ is more likely than any other. This leads to a flat
prior :

π(θ) = constant = 1

i.e. Lebesgue measure on Θ ⊂ Rd (can be improper). Then

π(θ|x) = L(θ;x)/

∫
Θ
L(θ;x)dθ

is well defined if ∫
Θ
f(x; θ)dθ < +∞, almost surely in x
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Example X ∼ Exp(θ), π(θ) = 1.∫ ∞
0

e−θxθdθ < +∞ ⇔ x > 0

and for all θ > 0 P[X = 0|θ] = 0. Hence, the posterior is well defined.
Consider, however, an alternative parametrization, by letting η = log θ.

π̃(η) = π(θ(η))
dθ

dη
=
dθ

dη
= eη 6= 1

As a prior in η, π̃ is far from uniform so very informative .
Remark: This is also true for weakly informative priors like N (0, V )
with V large.
Interesting only if θ is a discrete parameter.

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 17 / 30



Jeffreys’ Priors
Jeffreys reasoned as follows. If we have a rule for constructing priors it
should lead to the same distribution if we apply it to θ or some other
parameterization ψ with g(ψ) = θ. Jeffreys took

π(θ) ∝
√
Iθ where Iθ = E

[(
∂`

∂θ

)2
]

is the Fisher information.

Now if g(ψ) = θ then

πΨ(ψ) ∝ π(g(ψ))|g′(ψ)|,

so Jeffreys rule should yield πΨ(ψ) ∝
√
Ig(ψ)|g′(ψ)|. The rule gives

πΨ(ψ) ∝
√
Iψ. But Iψ = E

[(
∂`
∂θ

∂θ
∂ψ

)2
]

= g′(ψ)2Ig(ψ), so

√
Iψ =

√
Ig(ψ)|g′(ψ)|

and the rule is consistent in this respect.
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Higher dimensions

If Θ ⊂ Rk, and `(θ;X) = log(f(X; θ)), the Fisher information

[Iθ]i,j = −Eθ
(
∂2`(θ;X)

∂θi∂θj

)
satisfies

−Eθ
(
∂2`(θ;X)

∂θi∂θj

)
= Eθ

(
∂`(θ;X)

∂θi

∂`(θ;X)

∂θj

)
subject to regularity conditions. A k-dimensional Jeffreys’ prior

π(θ) ∝ |Iθ|1/2

(|A| ≡ det(A)) is invariant under 1-1 reparameterization.

Exercise Verify 1 to 1 g(ψ) = θ in Rk gives πΨ(ψ) =
√
Ig(ψ)

∣∣∣∂θT∂ψ ∣∣∣.
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Partially informative priors : Maximum Entropy Priors

Choose a density π(θ) which maximizes the entropy

Ent[π] = −
∫

Θ
π(θ) log π(θ)dθ

over functions π(θ) subject to constraints on π. This is a Calculus of
Variations problem.
Example: The distribution π maximizing Ent[π] over all densities π on
Θ = R, subject to∫ ∞
−∞

π(θ)dθ = 1,

∫ ∞
−∞

θπ(θ)dθ = µ, and

∫ ∞
−∞

(θ − µ)2π(θ)dθ = σ2,

is the normal density

π(θ) =
1√

2πσ2
e−(θ−µ)2/2σ2

.
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This is a special case of the following Theorem.

Theorem

The density π(θ) that maximizes Ent(π), subject to

E[tj(θ)] = φj , j = 1, . . . , p

takes the p-parameter exponential family form

π(θ) ∝ exp


p∑
j=1

λjtj(θ)


for all θ ∈ Θ, where λ1, . . . , λp are determined by the constraints.

(Proof in Leonard and Hsu).
Example t1(θ) = θ, E(t1) = µ, t2(θ) = (θ − µ)2, E(t2) = σ2 gives
π(θ) ∝ exp(λ1θ + λ2(θ − µ)2). Impose the constraints to get λ1 = 0 and
λ2 = −1/2σ2.
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Heuristics behind this approach

In the discrete case, i.e. Θ = {1, · · · , N}

−
N∑
i=1

πi log πi ≤ logN, ∀(π1, · · · , πN ) ∈ SN simplex

with equality iff
π1 = · · · = πN = 1/N,

i.e. the uniform prior has the highest entropy (degree of uncertainty).
Hence max-entropy principle looks for the least informative prior under
some specific prior information constraints.
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Example
Suppose prior probabilities are specified so that

P (aj−1 < θ ≤ aj) = φj , j = 1, . . . , p

with
∑

j φj = 1 and

θ ∈ (a0, ap), a0 ≤ a1 ≤ · · · ≤ ap.

We find the maximum entropy distribution subject to these conditions.
The conditions are equivalent to

E[tj(θ)] = φj , j = 1, . . . , p

where tj(θ) = I[aj−1 < θ ≤ aj ]. The posterior density of θ is

π(θ) ∝ exp


p∑
j=1

λjI[aj−1 < θ ≤ aj ]

 , a0 ≤ θ ≤ ap

where λ1, . . . , λp are determined by the conditions. π(θ) is hence a
histogram, with intervals (a0, a1], (a1, a2], . . . , (ap−1, ap].
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Comments on Max Ent priors

I The construction is independent of the model and the meaning of the
parameter .

I It does not always exist. e.g. if the constraint is just E(θ) = µ
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Summary on “non-informative” priors

I Uniform prior: π(θ) ∝ 1 : näıve and can be a bad idea unless θ is
discrete

I Jeffreys’ prior: π(θ) ∝
√
Iθ: relative probability assigned to a volume

of a probability space is invariant to parameterization

I Partially informative prior via max-entropy: choose π to maximize
Ent[π] = −

∫
Θ π(θ) log π(θ)dθ under constraints on π.
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Predictive distributions

X1, . . . , Xn are observations from f(x; θ) and the predictive distribution of
a further observation Xn+1 is required.

Definition

If x = (x1, . . . , xn) are iid from f(x; θ) then the posterior predictive
distribution is

g(xn+1 | x) =

∫
f(xn+1; θ)π(θ | x)dθ

Predictive distributions are useful for ... prediction.

They are used also for model checking. Divide the data in two groups,
Y = (X1, ..., Xa) and Z = (Xa+1, ..., Xn). If we fit using Y and check
that the ‘reserved data’ Z overlap g(xn+1 | x) in distribution.
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Poisson example cont’d
The “prior predictive” distribution is just the marginal. Using

p(y) =

∫
p(y|θ)π(θ)dθ =

p(y|θ)π(θ)

p(θ|y)

which reduces to

p(y) =

(
α+ y − 1

y

)(
β

β + 1

)α( 1

β + 1

)y
, y ∼ Neg-bin (α, β).

In other words

Neg-bin (y|α, β) =

∫
Poisson(y|θ)Gamma(θ|α, β)dθ.

Therefore

p(yn+1|y) =

∫
Poisson(y|θ)Gamma(θ|α+ nȳ, β + n)dθ

∼ Neg-bin (y|α+ nȳ, β + n).
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p(y) =
p(y|θ)π(θ)
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(
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y
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β
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)y
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Example : Normal with known variance
Data X1, . . . , Xn are iid N(θ, σ2) with σ2 known and prior θ ∼ N(µ0, σ

2
0).

Predict Xn+1.

p(θ|y) ∝ π(θ)p(y|θ) ∝ exp

(
− 1

2σ2
0

(θ − µ0)2

) n∏
i=1

exp

(
− 1

2σ2(yi − θ)2

)

∝ exp

(
−1

2

[
1

σ2
0

(θ − µ0)2 +
1

σ2

n∑
i=1

(yi − θ)2

])

Complete the squares to obtain

p(θ|y) = p(θ|ȳ) = N(θ|µn, σ2
n)

where

µn =
σ−2

0 µ0 + nσ−2ȳ

σ−2
0 + nσ−2

and σ−2
n = σ−2

0 + nσ−2.

Observe 1) that if σ2
0 = σ2 then the prior has same weight as one extra

observation! 2) If n large then p(θ|y) ≈ N(θ|ȳ, σ2/n).
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SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 28 / 30



Example : Normal with known variance
Data X1, . . . , Xn are iid N(θ, σ2) with σ2 known and prior θ ∼ N(µ0, σ

2
0).

Predict Xn+1.

p(θ|y) ∝ π(θ)p(y|θ) ∝ exp

(
− 1

2σ2
0

(θ − µ0)2

) n∏
i=1

exp

(
− 1

2σ2(yi − θ)2

)

∝ exp

(
−1

2

[
1

σ2
0

(θ − µ0)2 +
1

σ2

n∑
i=1

(yi − θ)2

])

Complete the squares to obtain

p(θ|y) = p(θ|ȳ) = N(θ|µn, σ2
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Example : Normal with known variance

In order to calculate the posterior predictive density for Xn+1 we need to
evaluate

g(xn+1 | x) =

∫ ∞
−∞

1√
2πσ2

e−
(x−θ)2

2σ2
1√

2πσ2
n

e
− (θ−µn)2

2σ2n dθ

We could complete the square to solve this. Alternatively, think how Xn+1

is built up.
We have θ|X ∼ N(µn, σ

2
n) and Xn+1 ∼ θ +N(0, σ2).

If Y,Z ∼ N(0, 1) then

Xn+1 = µn + σnZ + σY.

It follows that Xn+1 ∼ N(µn, σ
2 + σ2

n) is the posterior predictive density
for Xn+1|X1, ..., Xn.
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Summarizing posterior inference

The posterior p(θ|y) contains all current information.

I Graphical display

I Contour and scatter plots in multidimensional cases

Summary statistics

I mean, median, mode

I Standard deviation

I Central interval, highest posterior density interval (HPD).
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