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Chapter 7: Prior Distributions and
Predictive Distributions
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Constructing priors

Subjective Priors: Write down a distribution representing prior knowledge
about the parameter before the data is available. If possible, build a model
for the parameter. If different scientists have different priors or it is unclear
how to represent prior knowledge as a distribution, then consider several
different priors. Repeat the analysis and check that conclusions are
insensitive to priors representing 'different points of view’.

Non-Subjective Priors: Several approaches offer the promise of an
"automatic’ and even 'objective’ prior. We list some suggestions below
(Jeffreys, MaxEnt). They can be used in context of small or non reliable
prior information or as references. These approaches can also be useful to
complete the specification of a prior distribution, once subjective
considerations have been taken into account.
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Conjugate priors

Definition
Consider a sampling model f(X;0),0 € O for observables X. We say that
a family of prior distributions (7,~ € I') is conjuguate if for all v € I" and
all x € X, there exists (z) such that

TW(“:L') = 'y(x)()
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Example : Normal distribution when the mean and
variance are unknown.

X:(Xl,"' 7Xn)7 Xi%iN(,u7o-2)) 721/02’ 0:(7—7:“)

7 is called the precision.
Prior
[wlo®] ~ N(v,ro?), 7~T(a,f), veR

The prior is
_ B a1 —BT —1/2_1/2 T 2
(T, 1) = F(a)T e (2mr) 4T exp{ P (b —v) }

or
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Normal example - la suite

The likelihood is

f@ | p,7) = (2m) "2 exp {—; Z(xi — M)Q}

Thus

1 1
a+(n/2)—1/2 2 2
w7 p | a) oc TOF D72 exp [T{BJF%(MV) +5Z(%’*H) H
Complete the square to see that
(w=v)/r+ Y (2= p)

( -1 ) kv +nz 2+ n
= (kK n -
A R, nk+1

(@ —v)’+ ) (2 — 1)
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Example Normal - the end

Thus the posterior is

el 2) oo e (o {3 L0 -]

where
-1 _
1 n 1
/! = 2 L =)2
Fro= Bty @)+ Y (i)

This is the same form as the prior, so the class is conjugate.
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Marginalisation : posterior on p

If we are interested in the posterior distribution of i alone

r(ul) = / () dr

o0 , 1
o'—1/2 2
oc/O 79712 exp |:—T {6' + 2&’(1/ — 1) H dr

We recognize a I'(a/ +1/2, 8" + (V' — p)?/(2x') for 7 so that

m(plz) o< (28'+ (V' — p)? /)@Y = Student (o/ +1/2,0/, (28'K) 1)
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Conjugate priors for Exponential Families

k n n
fa]8) =exp{ 3 A;0) Bj(as) + Y Clas) +nD(6)
j=1 i=1 i=1
The following family of priors is conjugate:
k
mr(6) o exp{nD(0) + ) _ A;(6)7;}
j=1
where 7 = (79, ..., 7)) are constant prior parameters
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Priors for Exponential Families
The posterior density is proportional to
flx|0)m(0]| T0,...,7%)

k
X exp ZA ZB i)+ 7
j=1

+ (n+70)D(6)

This is an updated form of the prior with

Bi@) = Y By)+m,

n = n+m
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Priors for Exponential Families: Example

X1, Xa, ... iid Poisson(6).
pyl0) oc e t(y) =Y "y
=1

Exponential with natural parameter ¢(0) = logf. D(0) = —n#@ so that the
natural conjugate distribution

7_‘_(9) x 67B9+(a71) log9.

Gamma density with parameters (a, 3).
Exercise: check that p(f|y) ~ Gamma(a + ny, 8 + n).
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About conjugate priors

» They are mathematically practical

» They are not justified on other grounds — but in some cases
mathematical ease is important

» It is often easy to interpret the hyper parameters
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Improper priors
In the Bayesian paradigme

[(X[0] ~ f(x:0), O~

both are probability densities
We can generalize

We say that a prior distribution is improper if its mass is infinite

/ m(0)df = +oo, w(#) >0
©

The posterior distribution is defined as soon as

/ f(z;0)7(0)df < +o0, almost surely in
©
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Examples

» Gaussian + Lebesgue measure exercise:

X~ N, 1), w(p) =1

> X ~ B(n,p) and w(p) = [p(1 —p)]~! : Haldane prior . Although it is
used in some cases the posterior is not well defined.

m(plx) oc p* L1 —p)" 1 improperif =0 or xz=n

and for all p €]0, 1]

P(X =0|p) + P(X =n|p) >0

Remark general case : if X is a discrete distribution then one cannot use
an improper prior Exercise : prove it
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Non-informative priors

When do we want to use noninformative priors ?

There are cases where there is little or no prior information - at least on
some aspects of the parameters.

Useful to determine automatic procedures so that the choice becomes less
arbitrary.
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Uniform priors - a naive choice

Laplace’s principle of insufficient reason: we do not have a reason to think

that one value of € is more likely than any other. This leads to a flat
prior:

7(0) = constant = 1

i.e. Lebesgue measure on © C R? (can be improper). Then

m(0|x) = Ga:// (0; z)d

is well defined if

/ f(x;0)df < +o0, almost surely in
e
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Example X ~ Exp(#), 7(0) = 1.
o0
/ e %0d < 400 x>0
0

and for all # > 0 P[X = 0|0] = 0. Hence,
Consider, however, an alternative parametrization, by letting n = log 9.

dg  do

7(n) = m(0(n ))d77 =

777&1

As a prior in 7, 7 is far from uniform so very informative .

Remark: This is also true for weakly informative priors like A/(0,V)
with V' large.

Interesting only if 6 is a discrete parameter.
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Jeffreys’ Priors

Jeffreys reasoned as follows. If we have a rule for constructing priors it
should lead to the same distribution if we apply it to 8 or some other
parameterization ¢ with g(¢) = 0. Jeffreys took

7(0) x /Iy where Iy=E

2
<g§> ] is the Fisher information.

Now if g(1)) = 6 then

mu (1) o< m(g(¥))lg' (V)]
so Jeffreys rule should yield 7y (v)) oc \/Ty(y)l9' (¥

Ty (Y) < \/Ty. But Iy = [(3533) } _ g/(w)qg(d;), so

VIp = \/yw)l9' @)

and the rule is consistent in this respect.

)|- The rule gives
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Higher dimensions

If © C R¥, and ¢(0; X) = log(f(X;0)), the Fisher information

920(0; X)
s == (%555, )

satisfies

g (PUOX)Y _ o (9U0:X) 9U(6; X)
“\og00;, ) O\ 08, 09,

subject to regularity conditions. A k-dimensional Jeffreys' prior
m(0) o< [Ip|'/?

(|A] = det(A)) is invariant under 1-1 reparameterization.
Exercise Verify 1 to 1 g(¢) = 6 in RF gives my(¢) = | /L g(y) ‘% :
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Partially informative priors : Maximum Entropy Priors

Choose a density 7(6) which maximizes the entropy

Ent[r] = —/@77((9) log 7(6)d6

over functions () subject to constraints on 7. This is a Calculus of
Variations problem.

Example: The distribution 7 maximizing Ent[r]| over all densities 7 on
© = R, subject to

h m(0)df = 1, - 97 (0)dd = i, and h (0 — p)*n(0)do = o2,
/. /. /

—00

is the normal density
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This is a special case of the following Theorem.

Theorem
The density w(0) that maximizes Ent(m), subject to

takes the p-parameter exponential family form

m(6) cexpq > Ajt;(0)
Jj=1

for all € ©, where Ay, ..., )\, are determined by the constraints.

(Proof in Leonard and Hsu).

Example t1(0) = 0, E(ty) = p, t2(0) = (6 — )2, E(t2) = o2 gives

7(0) < exp(A\10 + A2 (6 — 11)?). Impose the constraints to get A; = 0 and
Ay = —1/202.

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 21 / 30



Heuristics behind this approach

In the discrete case, i.e. © ={1,--- N}

N
—Zm logm; <logN, ¥(m,---,7n) €SN simplex
i=1

with equality iff
m =---=7y=1/N,

i.e. the uniform prior has the highest entropy (degree of uncertainty).
Hence max-entropy principle looks for the least informative prior under
some specific prior information constraints.
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Example
Suppose prior probabilities are specified so that

P(aj_l<9§aj):¢j,j:1,...,p
with >, ¢; =1 and
6 € (ag,ap), ap < ay; <--- < ap.

We find the maximum entropy distribution subject to these conditions.
The conditions are equivalent to

Eltj(0)] = ¢j,5 = 1,...,p
where t;(0) =I[aj—1 < 6 < a;]. The posterior density of 0 is

p
) X exp Z Ilaj—1 <0 <aj] p,a<0<a,

where A1, ..., )\, are determined by the conditions. 7(6) is hence a
histogram, with intervals (ag, a1], (a1, a2}, ..., (ap—1,ap].

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 23 / 30



Comments on Max Ent priors

» The construction is independent of the model and the meaning of the
parameter .

» It does not always exist. e.g. if the constraint is just E(0) =
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Summary on “non-informative” priors

|
» Uniform prior: 7(#) o< 1 : naive and can be a bad idea unless ¢ is
discrete

» Jeffreys’ prior: 7(0) o< \/Iy: relative probability assigned to a volume
of a probability space is invariant to parameterization

> Partially informative prior via max-entropy: choose 7 to maximize
Ent[r] = — [ 7(0) log w(6)d6 under constraints on .
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Predictive distributions

X1, ..., X, are observations from f(x;6) and the predictive distribution of
a further observation X1 is required.

If £ = (21,...,2,) are iid from f(z;0) then the posterior predictive
distribution is

ganss |2) = [ f@nriO)n(6 | 2)ds

Predictive distributions are useful for ... prediction.
They are used also for model checking. Divide the data in two groups,

Y =(X1,...,X,) and Z = (X441, ..., Xp). If we fit using Y and check
that the ‘reserved data’ Z overlap g(x,+1 | ) in distribution.
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Poisson example cont'd
The “prior predictive” distribution is just the marginal. Using
p(yl0)m(0
ply) = / p(l0)(0)do = LWOITO)

p(0ly)
which reduces to

S (“2"1> <Bi1>a<ﬂi1>y’ y~ Negrbin (o, 6).

In other words

Neg-bin (y|o, B) :/Poisson(y|0)Gamma(0\a,ﬂ)dG.
Therefore

P(Yn+1ly) = /Poisson(y\@)Gamma(Q]a +ny, 5+ n)db

~ Neg-bin (y|a+ ny, B+ n).
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Poisson example cont'd

The “prior predictive” distribution is just the marginal. Using

~ pyl0)=(0) _ Poisson(y|0)Gamma(0|c, )
W= Y T Gamma(dla .1+ )

which reduces to

P@>=(a+§_1><ﬁi1>a(5il)a y~ Negrbin (o, 6).

In other words

Neg-bin (y|o, B) :/Poisson(y|0)Gamma(0\a,ﬂ)dG.
Therefore

P(Yn+1ly) = /Poisson(y\@)Gamma(Q]a +ny, 5+ n)db

~ Neg-bin (y|a+ ny, B+ n).
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Example : Normal with known variance
Data X1,..., X, are iid N(0,0?%) with 0% known and prior 8 ~ N (p0, o3).
Predict X, 41.

p(0ly) oc w(0)p(y|0)

Complete the squares to obtain

p(0ly) = p(0]y) = N(0|pin, 07)

where

-2 2

:00_2—1—n0_.

Observe 1) that if o3 = o2 then the prior has same weight as one extra
observation! 2) If n large then p(fly) ~ N(0|y,a%/n).
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Example : Normal with known variance
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p(01) < m(0)p010) xexp (=520~ 0?) TTeww (~ oz )
i=1 ‘
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Example : Normal with known variance
Data X1,..., X, are iid N(0,0?%) with 0% known and prior 8 ~ N (p0, o3).
Predict X, 41.

p<e|y>o<w<9>p<y|e>o<exp( ge o) )f[exp( T )

=1

1 1 —
O z:l

Complete the squares to obtain

p(0ly) = p(0]y) = N(0|pin, 07)

where
-2

. :UO_2+TL0'

Observe 1) that if o3 = o then the prior has same weight as one extra
observation! 2) If n large then p(fly) ~ N(0|y,a%/n).

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 28 / 30



Example : Normal with known variance

In order to calculate the posterior predictive density for X,, 1 we need to
evaluate

© 1 @ 1 o)
g(:cn+1\x):/ e 22 e 2n df

—00 V2mo? \2mo?

We could complete the square to solve this. Alternatively, think how X,
is built up.

We have 0| X ~ N(pin,02) and X, 11 ~ 0 + N(0,02).

IfY,Z ~ N(0,1) then

Xn41 = pin +onZ +0oY.

It follows that X, 11 ~ N (jin, 02 + 02) is the posterior predictive density
for Xn+1|X1, PN Xn
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Summarizing posterior inference

The posterior p(f|y) contains all current information.

» Graphical display

» Contour and scatter plots in multidimensional cases
Summary statistics

» mean, median, mode

» Standard deviation

» Central interval, highest posterior density interval (HPD).
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