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Chapter 12: Bayesian Hypothesis Tests
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Psychokinesis example

The experiment: Schmidt, Jahn and Radin (1987) used electronic and
quantum-mechanical random event generators with visual feedback.
Subject with alleged ability tries to ”influence“ the generator.

1. Stream of particles arrive at ’quantum gate’; each goes on to either
red or green light.

2. Quantum mechanics implies a 50/50 ratio.

3. Subject tries to influence particles to go to red.

Model: X = # red particles. X ∼ Bin(n, θ). n = 104, 490, 000. Observe
x = 52, 263, 471.
Question : Has the subject influenced the particles ?
H0 : θ = 1/2 vs H1 : θ 6= 1/2
P-value Pθ=1/2(X ≥ x) ≈ .0003. Strong evidence of paranormal ability?!
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Bayesian tests
Model : X|θ ∼ fθ(·), θ ∈ Θ ∼ Π
Testing problem

H0 : θ ∈ Θ0, vs H1 : θ ∈ Θ1, Θ0 ∩Θ1 = ∅

0− 1 loss function δ ∈ {0, 1}

L(θ, δ) =

{
1 if 1θ∈Θ1 6= δ
0 otherwise

Bayesian test

δ(X) =

{
1 if Π(Θ0|X) ≤ Π(Θ1|X)
0 if Π(Θ0|X) > Π(Θ1|X)

[Proof : exercise]
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Simple/composite hypotheses

Definition

I A hypothesis Hj : θ ∈ Θj is called simple iff Θj is a singleton.

I A hypothesis Hj : θ ∈ Θj is called composite iff Θj is NOT a
singleton.

Psychokinesis example:
H0 : θ = 1/2 is simple, H1 : θ 6= 1/2 is composite.
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Construction of priors in the case of a simple hypothesis

We cannot use a continuous prior on Θ if Π has density (wrt Lebesgue)
then

Π(Θ0) =

∫
{θ0}

π(θ)dθ = 0

We construct a prior as a mixture between a prior on Θ0 and a prior on Θ1.

Π(dθ) = p0Π0(dθ) + (1− p0)Π1(dθ)

where Π0 is a probability distribution on Θ0 and Π1 is a probability
distribution on Θ1.
p0 = Π(Θ0) Then if Θ1 = {θ ∈ Θ, θ 6= θ0}

Π = p0δ(θ0) + (1− p0)Π1, Π1(Θ1) = 1.
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Test in the case of a simple hypothesis

Π = p0δ(θ0) + (1− p0)Π1, Π1(Θ1) = 1

Posterior

Π({θ0}|X) =
p0fθ0(X)

p0fθ0(X) + (1− p0)
∫

Θ1
fθ(X)π1(θ)dθ

.

Bayes test

δ(X) = 1 ⇔ p0fθ0(X) < (1− p0)

∫
Θ1

fθ(X)π1(θ)dθ

⇔ fθ0(X)∫
Θ1
fθ(X)π1(θ)dθ︸ ︷︷ ︸
Bayes factor

<
1− p0

p0
.
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Psychokinesis example cont’d
Recall

H0 :

{
θ =

1

2

}
vs H1 =

{
θ 6= 1

2

}
.

Let us chose p0 = Π(H0) = 1
2 and Π1 = U(0, 1). Note that

Π1({1/2}) = 0
Posterior probability of hypothesis H0:

Π(H0|x) = Π({1/2}|x) =
p0f(x|θ = 1

2)

p0f(x|θ = 1
2) + (1− p0)

∫ 1
0 fθ(x)dθ

=

(
n
x

)
2−n(

n
x

)
2−n + 1

n+1

.

Direct calculation gives a very different conclusion from the one based on
the p-value (recall p ≈ 0.0003):

Π(H0|x = 52, 263, 471) ≈ 0.92.
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Point composite hypothesis
Example X1, · · · , Xn ∼ N (µ, σ2), θ = (µ, σ2).

H0 : µ = 0, vs H1 : µ 6= 0 Θ0 = {0} × R+∗

Same approach as for simple hypothesis But

I Π0 is defined as δ(0) ⊗Πσ where Πσ is the prior distribution on σ
with density πσ

I Π1 has density (wrt Lebesgue ) on R× R+∗, e.g.

π1(µ, σ2) =
ϕ
(µ−µ0

στ

)
στ

× (σ2)−a−1e−b/σ
2 ba

Γ(a)

i.e . hierarchical prior : under H1

µ|σ ∼ N (µ0, σ
2τ2), σ2 ∼ IGamma(a, b)
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Posterior calculations

Π(Θ0|x) =
p0m0(x)

p0m0(x) + (1− p0)m1(x)

I

m0(x) =

∫ ∞
0

f(x|µ = 0, σ2)πσ(σ)dσ

marginal likelihood under H0

I

m1(x) =

∫
R

∫ ∞
0

f(x|µ, σ2)π(µ|σ2, )πσ(σ)dσdµ

marginal likelihood under H1
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Posterior calculations

Generally speaking one can write the posterior probability of Θ0 as

Π(Θ0|X) =
p0m0(X)

p0m0(X) + (1− p0)m1(X)

where

I

m0(X) =

∫
Θ0

fθ(X)Π0(dθ)

marginal likelihood under H0

I

m1(X) =

∫
Θ1

fθ(X)Π1(dθ)

marginal likelihood under H1
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Bayes factor

Definition (Bayes factor)

The Bayes factor of H0 over H1 is given by

B0/1(X) =
m0(X)

m1(X)
.

The Bayes test associated to the 0− 1 loss function verifies

δ(X) = 1 ⇔ B0/1(X) <
1− p0

p0

I H0 : θ = θ0 vs H1 : θ 6= θ0

B0/1 =
fθ0(X)∫

Θ1
fθ(X)π(θ)dθ
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Interpreting Bayes Factors

Adrian Raftery gives this table (values are approximate, and adapted from
a table due to Jeffreys) interpreting B.

‘P (H0|x)’ B 2 log(B) evidence for H0

< 0.5 < 1 < 0 negative (supports H1)
0.5 to 0.75 1 to 3 0 to 2 barely worth mentioning
0.75 to 0.92 3 to 12 2 to 5 positive
0.92 to 0.99 12 to 150 5 to 10 strong
> 0.99 > 150 > 10 very strong

2 log(B) sometimes reported because it is on the same scale as the
familiar deviance and likelihood ratio test statistic.
In Psychokinesis example B = 12, corresponding to positive-to-strong
evidence in favour of H0 (no paranormal ability).
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The Bayes factor is the ratio of marginal likelihoods

Continuous case mj(X) = P (x|Hj) =

∫
Θj

L(θ;x)π(θ|Hj)dθ,

Discrete case mj(X) = P (x|Hj) =
∑
θ∈Θj

L(θ;x)π(θ|Hj),

Simple hyp. case mj(X) = P (x|Hj) = L(θ0;x).
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Example

In a quality inspection program components are selected at random from a
batch and tested. Let θ denote the failure probability. Suppose that we
want to test for H0 : θ ≤ 0.2 against H1 : θ > 0.2.

π(θ) = 30θ(1− θ)4, 0 < θ < 1.

And this implies p0 = p(H0) = π(θ ∈ Θ0) then
p(H0) =

∫ 0.2
0 30θ(1− θ)4dθ so that p(H0) ' 0.345 and

p(H1) ' 1− 0.345.
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Example

Thus

π(θ|H0) =
30θ(1− θ)4

p(H0)
, 0 < θ ≤ 0.2

and

π(θ|H1) =
30θ(1− θ)4

p(H1)
, 0.2 < θ < 1
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Example (cont)
In the quality inspection program suppose n components are selected for
independent testing. The number X that fail is X ∼ Binomial(n, θ).

The marginal likelihood for H0 is

m0(x) =

∫
Θ0

L(θ;x)π(θ|H0)dθ

=

(
5

x

)∫ 0.2

0
θx(1− θ)n−x 30θ(1− θ)4

π(H0)
dθ

For one batch of size n = 5, X = 0 is observed. Recall that pH0) ' 0.345.
Then

m0(x) =

(
5

0

)∫ 0.2

0

30θ(1− θ)9

p(H0)
dθ

' 0.185/0.345 = 0.536.
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Similarly, for H1 : θ ∼ Beta(2, 5)|θ > 0.2

m1(x) =

(
5

0

)∫ 1

0.2

30θ(1− θ)9

p(H1)
dθ

' 0.134.

Π(H0|x) =
P (x|H0)p0

m(x)

p0 =
P (θ ∈ Θ0)

(P (θ ∈ Θ0) + P (θ ∈ Θ1))
= π(H0)

m0(x)p0 ' 0.185

m1(x)(1− p0) ' 0.088

m(x) ' m0(x)p0 +m1(x)(1− p0) ' 0.273

Π(H0|x) ' 0.185/0.273 = 0.678 Π(H1|x) ' 0.322

B =
m0(x)

m1(x)
' 0.536/0.134 = 4
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Example
X1, . . . , Xn are iid N(θ, σ2), with σ2 known.
H0 : θ = 0, H1 : θ|H1 ∼ N(µ, τ2). Bayes factor is m0/m1, where

m0 = (2πσ2)−n/2 exp

(
− 1

2σ2

∑
x2
i

)
m1 = (2πσ2)−n/2

∫ ∞
−∞

exp

(
− 1

2σ2

∑
(xi − θ)2

)
× (2πτ2)−1/2 exp

(
−(θ − µ)2

2τ2

)
dθ.

Completing the square in m1 and integrating dθ,

m1 = (2πσ2)−n/2
(

σ2

nτ2 + σ2

)1/2

× exp

[
−1

2

{
n

nτ2 + σ2
(x̄− µ)2 +

1

σ2

∑
(xi − x̄)2

}]
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So

B =

(
1 +

nτ2

σ2

)1/2

exp

[
−1

2

{
nx̄2

σ2
− n

nτ2 + σ2
(x̄− µ)2

}]
Defining t =

√
nx̄/σ, η = −µ/τ, ρ = σ/(τ

√
n), this can be written as

B =

(
1 +

1

ρ2

)1/2

exp

[
−1

2

{
(t− ρη)2

1 + ρ2
− η2

}]
This example illustrates a problem choosing the prior. If we take a diffuse
prior under H1: i.e. τ → +∞, then B →∞ whatever x, giving
overwelming support for H0.
This is an instance of Lindley’s paradox.
Bayes factor & Bayes tests (under 0− 1 loss) are not defined when the
priors are improper
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Model selection

Framework for Bayesian Model selection

Models (or hypothesis) for data x: M1, . . . ,Mk. Under model Mi;

I X ∼ fi(x; θi) where θi unknown parameter.

I Prior for θi is πi(θ).

I Prior probability P (Mi) (= 1/k in the uniform prior case)

I Marginal density of X is mi(x) = m(x|Mi) =
∫
fi(x|θi)πi(θi)dθi.

1. Posterior density πi(θi|x) = fi(x|θi)πi(θi)/m(x|Mi).

2. Bayes factor of Mj to Mi is Bji = m(x|Mj)/m(x|Mi).

3. Posterior

Π(Mi|x) =
(Mi)m(x|Mi)∑
j Π(Mj)m(x|Mj)

=

∑
j

Π(Mj)

Π(Mi)
Bji

−1

.
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