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Chapter 11: Empirical Bayes
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Empirical Bayes

Bayes estimators have good risk properties (for example, the posterior
mean is usually admissible for quadratic loss).

However, Bayes estimators may be hard to compute, particularly for
hierarchical models.

In Empirical Bayes, we use hierarchical Bayesian reasoning to derive
estimators, but with a particular strategy to simplify hierarchical models.
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Empirical Bayes
Recall the setup for Bayesian inference for hierarchical models.

X ∼ f(x; θ)

θ ∼ π(θ;ψ)

ψ ∼ g(ψ)

Our prior for θ has a parameter ψ which also has a prior. The posterior is

π(θ, ψ|x) ∝ L(θ;x)π(θ;ψ)g(ψ)

If we want minimum risk for quadratic loss we should use the posterior
mean:

θ̂ =

∫ ∫
θπ(θ, ψ|x)dθdψ
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Empirical Bayes

Empirical Bayes (EB)

The EB approach is to avoid doing ψ-integrals by replacing ψ with a point
estimate ψ̂, derived from the data, and consider the model

X ∼ f(x; θ)

θ ∼ π(θ; ψ̂)

This EB approximation to the full posterior ’chops off’ a layer of the
hierarchy. The reduced model has posterior

π̂(θ|x) ∝ L(θ;x)π(θ; ψ̂),

and a Bayes estimator θ̂EB is calculated using π̂(θ|x). For example, for
quadratic loss,

θ̂ =

∫
θπ̂(θ|x)dθ.
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Empirical Bayes

We still need an estimator for ψ. There are several choices.

We can use the MMLE ψ̂ = arg maxψ p(x|ψ) for ψ in the marginal
likelihood

p(x|ψ) =

∫
L(θ;x)π(θ;ψ)dθ.

Moment-matching estimators are also used: e.g. choose ψ̂ such that
π(θ; ψ̂) has the same mean and variance as the sample mean and variance
of the MLEs of θi.
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Beta-binomial example
Meta-analysis of study of tumors in rodents.

102 HIERARCHICAL MODELS

Previous experiments:

0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/19 0/19 0/19
0/19 0/18 0/18 0/17 1/20 1/20 1/20 1/20 1/19 1/19
1/18 1/18 2/25 2/24 2/23 2/20 2/20 2/20 2/20 2/20
2/20 1/10 5/49 2/19 5/46 3/27 2/17 7/49 7/47 3/20
3/20 2/13 9/48 10/50 4/20 4/20 4/20 4/20 4/20 4/20
4/20 10/48 4/19 4/19 4/19 5/22 11/46 12/49 5/20 5/20
6/23 5/19 6/22 6/20 6/20 6/20 16/52 15/47 15/46 9/24

Current experiment:
4/14

Table 5.1 Tumor incidence in historical control groups and current group of rats, from Tarone
(1982). The table displays the values of

yj
nj

: (number of rats with tumors)/(total number of rats).

5.1 Constructing a parameterized prior distribution

Analyzing a single experiment in the context of historical data

To begin our description of hierarchical models, we consider the problem of estimating a
parameter θ using data from a small experiment and a prior distribution constructed from
similar previous (or historical) experiments. Mathematically, we will consider the current
and historical experiments to be a random sample from a common population.

Example. Estimating the risk of tumor in a group of rats
In the evaluation of drugs for possible clinical application, studies are routinely per-
formed on rodents. For a particular study drawn from the statistical literature, sup-
pose the immediate aim is to estimate θ, the probability of tumor in a population of
female laboratory rats of type ‘F344’ that receive a zero dose of the drug (a control
group). The data show that 4 out of 14 rats developed endometrial stromal polyps (a
kind of tumor). It is natural to assume a binomial model for the number of tumors,
given θ. For convenience, we select a prior distribution for θ from the conjugate family,
θ ∼ Beta(α,β).

Analysis with a fixed prior distribution. From historical data, suppose we knew that
the tumor probabilities θ among groups of female lab rats of type F344 follow an
approximate beta distribution, with known mean and standard deviation. The tumor
probabilities θ vary because of differences in rats and experimental conditions among
the experiments. Referring to the expressions for the mean and variance of the beta
distribution (see Appendix A), we could find values for α,β that correspond to the
given values for the mean and standard deviation. Then, assuming a Beta(α,β) prior
distribution for θ yields a Beta(α+ 4,β + 10) posterior distribution for θ.

Approximate estimate of the population distribution using the historical data. Typ-
ically, the mean and standard deviation of underlying tumor risks are not available.
Rather, historical data are available on previous experiments on similar groups of rats.
In the rat tumor example, the historical data were in fact a set of observations of tu-
mor incidence in 70 groups of rats (Table 5.1). In the jth historical experiment, let the
number of rats with tumors be yj and the total number of rats be nj . We model the
yj ’s as independent binomial data, given sample sizes nj and study-specific means θj .
Assuming that the beta prior distribution with parameters (α,β) is a good description
of the population distribution of the θj ’s in the historical experiments, we can display
the hierarchical model schematically as in Figure 5.1, with θ71 and y71 corresponding
to the current experiment.
The observed sample mean and standard deviation of the 70 values yj

nj
are 0.136 and

Assume # tumors ∼ Bin(n, θ). New experiment n = 14 and Y = 4. MLE
is 4/14 = 0.286. With a conjugate prior θ ∼ Beta(α, β), posterior is

p(θ|y) = Beta(α+ 4, β + 10).

E.g. for Jeffreys prior Beta(1/2, 1/2), posterior mean is 4.5/15 = 0.3.
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Figure 5.1: Structure of the hierarchical model for the rat tumor example.

0.103. If we set the mean and standard deviation of the population distribution to
these values, we can solve for α and β—see (A.3) on page 583 in Appendix A. The
resulting estimate for (α,β) is (1.4, 8.6). This is not a Bayesian calculation because
it is not based on any specified full probability model. We present a better, fully
Bayesian approach to estimating (α,β) for this example in Section 5.3. The estimate
(1.4, 8.6) is simply a starting point from which we can explore the idea of estimating
the parameters of the population distribution.
Using the simple estimate of the historical population distribution as a prior distribu-
tion for the current experiment yields a Beta(5.4, 18.6) posterior distribution for θ71:
the posterior mean is 0.223, and the standard deviation is 0.083. The prior informa-
tion has resulted in a posterior mean substantially lower than the crude proportion,
4/14 = 0.286, because the weight of experience indicates that the number of tumors
in the current experiment is unusually high.
These analyses require that the current tumor risk, θ71, and the 70 historical tumor
risks, θ1, . . . , θ70, be considered a random sample from a common distribution, an
assumption that would be invalidated, for example, if it were known that the historical
experiments were all done in laboratory A but the current data were gathered in
laboratory B, or if time trends were relevant. In practice, a simple, although arbitrary,
way of accounting for differences between the current and historical data is to inflate
the historical variance. For the beta model, inflating the historical variance means
decreasing (α+β) while holding α

β constant. Other systematic differences, such as a
time trend in tumor risks, can be incorporated in a more extensive model.

Having used the 70 historical experiments to form a prior distribution for θ71, we might
now like also to use this same prior distribution to obtain Bayesian inferences for the tumor
probabilities in the first 70 experiments, θ1, . . . , θ70. There are several logical and practical
problems with the approach of directly estimating a prior distribution from existing data:

• If we wanted to use the estimated prior distribution for inference about the first 70
experiments, then the data would be used twice: first, all the results together are used to
estimate the prior distribution, and then each experiment’s results are used to estimate
its θ. This would seem to cause us to overestimate our precision.

• The point estimate for α and β seems arbitrary, and using any point estimate for α and
β necessarily ignores some posterior uncertainty.

• We can also make the opposite point: does it make sense to ‘estimate’ α and β at all?

Assume # tumors ∼ Bin(n, θ). New experiment n = 14 and Y = 4. MLE
is 4/14 = 0.286. With a conjugate prior θ ∼ Beta(α, β), posterior is
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Beta-binomial example

Empirical Bayes using moment matching:

1. Compute MLEs Yi/ni for previous experiments, i = 1, . . . , 70.

2. Compute their sample mean and sample variance: m = 0.136,
v = 0.0106.

3. Pick α̂, β̂ such that Beta(α, β) has “matched moments”, i.e. mean
α/(α+ β) = m, and variance αβ

(α+β)2(α+β+1)
= v. Get

α̂ = 1.4, β̂ = 8.6.

Posterior is now:
p(θ|y) ∼ Beta(5.4, 18.6).

Posterior mean is 0.225, lower than 4/14 = 0.286.
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James-Stein estimator as an EB estimator

Data xi ∼ N (θi, 1), i = 1, . . . , p (so one observation xi for each
parameter θi). The MLE for θi is simply θ̂MLE,i = xi.

Suppose the prior is θi ∼ N (0, τ2).

If we knew τ we would have (simple completing the square exercise)

θi|(xi, τ) ∼ N
(
xiτ

2

1 + τ2
,

τ2

1 + τ2

)
.
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James-Stein estimator as an EB estimator
To get an estimate for τ we compute the marginal distribution for Xi

given τ , which is Xi ∼ N (0, τ2 + 1). The (unconstrained) MMLE for τ is
then τ̂2 = 1

p

∑p
i=1X

2
i − 1, and this gives

θ̂EB,i =
Xiτ̂

2

1 + τ̂2

=

(
1− p∑

iX
2
i

)
Xi

which is the James-Stein estimator

θ̂JS,i =

(
1− a∑

iX
2
i

)
Xi, with a = p.

Note: This is not the minimum risk JS estimator for quadratic loss (for
which a = p− 2), but it already strictly dominates the MLE for all θ. (the
JS estimator with a = p− 2 can be recovered using a method of moments
estimator for τ . See Young and Smith, Section 3.5)

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 10 / 17



James-Stein estimator as an EB estimator
To get an estimate for τ we compute the marginal distribution for Xi

given τ , which is Xi ∼ N (0, τ2 + 1). The (unconstrained) MMLE for τ is
then τ̂2 = 1

p

∑p
i=1X

2
i − 1, and this gives

θ̂EB,i =
Xiτ̂

2

1 + τ̂2

=

(
1− p∑

iX
2
i

)
Xi

which is the James-Stein estimator

θ̂JS,i =

(
1− a∑

iX
2
i

)
Xi, with a = p.

Note: This is not the minimum risk JS estimator for quadratic loss (for
which a = p− 2), but it already strictly dominates the MLE for all θ. (the
JS estimator with a = p− 2 can be recovered using a method of moments
estimator for τ . See Young and Smith, Section 3.5)

SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 10 / 17



Example: Poisson

Data xi ∼ Poisson(θi), i = 1, . . . , n (so one observation xi for each
parameter θi). The MLE for θi is simply θ̂MLE,i = xi. Construct an EB
estimator for quadratic loss.

Suppose the prior for θi’s is iid Exponential(λ) i.e. π(θi|λ) = λe−λθi .

p(xi | λ) =

∫ ∞
0

e−θiθxii
xi!

λe−λθidθi

=

(
1

1 + λ

)xi λ

1 + λ

⇒ given λ the xis are marginally iid Geometric(λ/(1 + λ)) with mean
1−p
p = λ−1.

The MMLE of λ based on x1, . . . , xn is λ̂ = 1/x̄, where x̄ = 1
n

∑n
i=1 xi.
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Example: Poisson
Now, under the EB simplification, set λ = λ̂, so that

π̂(θ|x) ∝ L(θ;x)π(θ|λ̂) =

n∏
i=1

e−θiθxii λ̂e
−λ̂θi

and we recognise θi|x ∼ Γ(xi + 1, λ̂+ 1) in this EB approximation. This
leads to an estimator

θ̂EB,i =

∫
θiπ̂(θi|x)dθi

=
xi + 1

λ̂+ 1
= x̄

xi + 1

x̄+ 1

We can rewrite this

θ̂EB,i = xi +
x̄

x̄+ 1
(x̄− xi)

showing that this EB estimator shrinks the estimates towards the common
mean.
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Some surprising features of the MMLE
Consider the hierarchical model X|θ ∼ f(·|θ), θ|ψ ∼ π(·|ψ). The marginal
likelihood is

m(X|ψ) =

∫
Θ
f(X|θ)π(θ|ψ)dθ

maximum marginal likelihood estimator

ψ̂ = argmaxψm(X|ψ)

Simple example

X = (X1, · · · , Xn)
iid∼ N (µ, 1), µ ∼ N (µ0, τ

2)

X̄n|µ0, τ ∼ N (µ0, τ
2 + 1/n)

• Fixed τ , optimization in µ0

µ̂0 = X̄n, [µ|X] ∼ N (X̄n, (n+ 1/τ2)−1)

This posterior behaves similarly to a posterior with fixed µ0, τ
2
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X̄n|µ0, τ ∼ N (µ0, τ
2 + 1/n)

• Fixed τ , optimization in µ0

µ̂0 = X̄n, [µ|X] ∼ N (X̄n, (n+ 1/τ2)−1)

This posterior behaves similarly to a posterior with fixed µ0, τ
2
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• Fixed µ0, optimization in τ

`n(µ0, τ
2) = −n(X̄n − µ0)2

2(nτ2 + 1)
− 1

2
log(nτ2 + 1)

∂`n(τ2)

∂τ2
=
n2(X̄n − µ0)2

2(nτ2 + 1)2
− n

2(nτ2 + 1)
= 0 ⇔ τ2 = (X̄n − µ0)2 − 1/n

I If (X̄n − µ0)2 − 1/n > 0 then τ̂2 = (X̄n − µ0)2 − 1/n

I If (X̄n − µ0)2 − 1/n ≤ 0 then `n(τ2) is non increasing and τ̂2 = 0

τ̂2 =
(
(X̄n − µ0)2 − 1/n

)
+

and µ̂ = µ0 if τ̂2 = 0 and if τ̂ > 0

µ̂ = X̄n

(
1− 1

n(X̄n − µ0)2

)
+

µ0

n(X̄n − µ0)2
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Even more degenerate

• optimization in both τ and µ0

µ̂0 = X̄n and τ̂2 = 0, (µ|X) ∼ δ(X̄n)

where δ(a) is the Dirac mass at a
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Non-parametric EB
Assume only that the θi are iid from some distribution π. Use the data to
estimate the prior or the marginal distribution directly.
(pioneered by Robbins (1950))

Model: yi|θi ∼ Poisson (θi) and θi
iid∼ π(·)

Square error loss ⇒ Bayes estimator is posterior mean:

θ̂i = E[θi|yi] =

∫
θπ(θ|yi)dθ

=

∫ (
θyi+1e−θ/yi!

)
π(dθ)∫

(θyie−θ/yi!)π(dθ)

=
(yi + 1)p(yi + 1)

p(yi)

The Robbins method: θ̂i is directly estimable as

θ̂i =
(yi + 1)p̂(yi + 1)

p̂(yi)
=

(yi + 1)[#y′s = (yi + 1)]

[#y′s = yi]
.
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Summary

1. Parametric EB: suppose θi iid π(θ|ψ) and evaluate ψ by ψ̂ estimated
from data.

I Avoids integrating over hyperparameters in complex, e.g. hierarchical
models.

I In models with exchangeable parameters pulls the estimates towards
the common mean.

I Recovers James-Stein estimators as a special case.
I But... some examples of degeneracy and potentially using the data

twice (overestimation of precision).

2. Non-parametric EB: suppose θi iid π(·) and estimate π̂ from data.
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