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Parametric vs Nonparametric models

@ Parametric models have a fixed finite number of parameters, regardless
of the dataset size. In the Bayesian setting, given the parameter vector 6,
the predictions are independent of the data D.

p(%,0|D) = p(6|D)p(x[0)

Parameters can be thought of as a data summary: communication
channel flows from data to the predictions through the parameters.

@ Nonparametric models allow the number of “parameters” to grow with

the dataset size. Alternatively, predictions depend on the data (and the
hyperparameters).
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Regression
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@ We are given adataset D = {(x;,yi)}l,, x; € R?, y; € R.
@ Regression: learn the underlying real-valued function f(x).

Department of Statistics, Oxford SC4/SM4 DMML, HT2017 4/11



Different Flavours of Regression

We can model response y; as a noisy version of the underlying function f

evaluated at input x;:
Yilf (i) ~ N (f (x;), 0%)

Appropriate loss: L(y,f(x)) = (y — f(x))?
Frequentist Parametric approach: model f as f; for some parameter
vector 6. Fit # by ML / ERM with squared loss (linear regression).

Frequentist Nonparametric approach: model f as the unknown
parameter taking values in an infinite-dimensional space of functions. Fit

f by regularized ML / ERM with squared loss (kernel ridge regression)

Bayesian Parametric approach: model f as f, for some parameter
vector 6. Put a prior on # and compute a posterior p(6|D) (Bayesian linear
regression).

Bayesian Nonparametric approach: treat f as the random variable
taking values in an infinite-dimensional space of functions. Put a prior
over functions f € F, and compute a posterior p(f|D) (Gaussian Process
regression).
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Gaussian Processes Gaussian Processes

@ Just work with the function values at
the inpUtS f = (f()ﬁ), s 7f(xn))T 15 .

The prior p(f) encodes our prior
knowledge about the function.

@ What properties of the function can
we incorporate?
o Multivariate normal prior on f:

f ~ N(0,K)
@ Use a kernel function & to define K:

Ky = k(x;, %))

o Expect regression functions to be o o1 0z 03 04 05 06 07
smooth: If xland x are plose by, thgn @ Model:
f(x) and f(x") have similar values, i.e.

strongly correlated. £ N(O, K)
() -(O) -G tg) e
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Gaussian Processes

@ What does a multivariate normal prior mean?

@ Imagine x forms an infinitesimally dense grid of data space. Simulate
prior draws

f ~ N(0,K)

Plotf;vs x;fori=1,...,n.

@ The corresponding prior over functions is called a Gaussian Process
(GP): any finite number of evaluations of which follow a Gaussian
distribution.
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Gaussian Processes

@ Different kernels lead to different function characteristics.

output, f(x)

output, f(x)

Carl Rasmussen. | Tutorial on Gaussian Processes at NIPS 2006.
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Gaussian Processes

fix ~ N (0,K)
ylf ~ N (£, 0%1)

@ Posterior distribution:
fly ~ N(K(K + o°I) "'y, K — K(K + 0%1)'K)

@ Posterior predictive distribution: Suppose x’ is a test set. We can extend
our model to include the function values f’ at the test set:

f / 0 Kxx Kxx’
(e) = (o) ()
yIf ~ N (£, 0%1)

where Ky is matrix with (i, j)-th entry k(x;, x7).
@ Some manipulation of multivariate normals gives:

fl|y ~ N (Kx’x(Kxx + 021)71)’; Kx’x/ - Kx’x(Kxx + 0—21)71Kxx’)
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Gaussian Processes
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GP régréssion demo: lhttp://www.trhpl.fi/gp/
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Summary

@ A whirlwind journey through data mining and machine learning
techniques:

o Unsupervised learning: PCA, MDS, Isomap, Hierarchical clustering,
K-means, spectral clustering, mixture modelling, EM algorithm, collaborative
filtering, biclustering.

e Supervised learning: Empirical risk minimisation, logistic regression,
support vector machines, kernel methods and Gaussian processes.

e Conceptual frameworks: prediction, performance evaluation,
generalisation, overfitting, regularisation, hypothesis spaces, model
complexity.

e Theory: statistical learning theory, convex optimisation, Bayesian vs.
frequentist learning, parametric vs non-parametric learning.

@ Topics we did not cover: neural networks and deep learning, generative
adversarial training, decision trees and random forests, boosting,
semisupervised learning, online learning, reinforcement learning,
Bayesian optimisation, probabilistic numerics... we just scratched the
surface!

@ Further resources:

e Machine Learning Summer Schools, videolectures.net.

o Conferences: NIPS, ICML, UAI, AISTATS.

Thank You!
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