SC4/SM4 Data Mining and Machine Learning Gaussian Processes

Dino Sejdinovic Department of Statistics Oxford

Slides and other materials available at:

http://www.stats.ox.ac.uk/~sejdinov/dmml

Parametric vs Nonparametric models

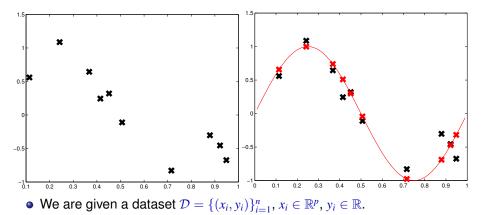
• **Parametric models** have a fixed finite number of parameters, regardless of the dataset size. In the Bayesian setting, given the parameter vector θ , the predictions are independent of the data \mathcal{D} .

 $p(\tilde{x}, \theta | \mathcal{D}) = p(\theta | \mathcal{D}) p(\tilde{x} | \theta)$

Parameters can be thought of as a data summary: communication channel flows from data to the predictions through the parameters.

• **Nonparametric models** allow the number of "parameters" to grow with the dataset size. Alternatively, predictions depend on the data (and the hyperparameters).

Regression



• Regression: learn the underlying real-valued function f(x).

Different Flavours of Regression

• We can model response y_i as a noisy version of the underlying function f evaluated at input x_i :

 $y_i|f(x_i) \sim \mathcal{N}(f(x_i), \sigma^2)$

Appropriate loss: $L(y, f(x)) = (y - f(x))^2$

- Frequentist Parametric approach: model f as f_{θ} for some parameter vector θ . Fit θ by ML / ERM with squared loss (linear regression).
- Frequentist Nonparametric approach: model *f* as the unknown parameter taking values in an infinite-dimensional space of functions. Fit *f* by regularized ML / ERM with squared loss (kernel ridge regression)
- **Bayesian Parametric** approach: model f as f_{θ} for some parameter vector θ . Put a prior on θ and compute a posterior $p(\theta|D)$ (Bayesian linear regression).
- **Bayesian Nonparametric** approach: treat *f* as the random variable taking values in an infinite-dimensional space of functions. Put a prior over functions $f \in \mathcal{F}$, and compute a posterior $p(f|\mathcal{D})$ (Gaussian Process regression).

- Just work with the function values at the inputs $\mathbf{f} = (f(x_1), \dots, f(x_n))^\top$
- What properties of the function can we incorporate?
 - Multivariate normal prior on f:

 $\boldsymbol{f} \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{K})$

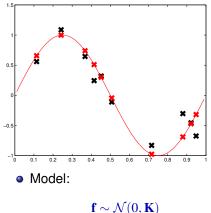
• Use a kernel function k to define K:

 $\mathbf{K}_{ij} = k(x_i, x_j)$

• Expect regression functions to be smooth: If *x* and *x'* are close by, then *f*(*x*) and *f*(*x'*) have similar values, i.e. strongly correlated.

$$\begin{pmatrix} f(x) \\ f(x') \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} k(x,x) & k(x,x') \\ k(x',x) & k(x',x') \end{pmatrix} \right)$$

The prior $p(\mathbf{f})$ encodes our prior knowledge about the function.



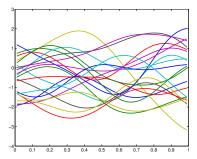
 $y_i | f_i \sim \mathcal{N}(f_i, \sigma^2)$

- What does a multivariate normal prior mean?
- Imagine x forms an infinitesimally dense grid of data space. Simulate prior draws

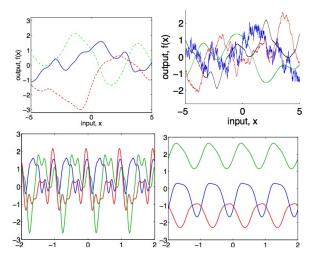
 $\boldsymbol{f} \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{K})$

Plot f_i vs x_i for $i = 1, \ldots, n$.

• The corresponding prior over functions is called a **Gaussian Process** (GP): any finite number of evaluations of which follow a Gaussian distribution.



• Different kernels lead to different function characteristics.



Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006.

 $\begin{aligned} \mathbf{f} | \mathbf{x} &\sim \mathcal{N}(0, \mathbf{K}) \\ \mathbf{y} | \mathbf{f} &\sim \mathcal{N}(\mathbf{f}, \sigma^2 I) \end{aligned}$

• Posterior distribution:

 $\mathbf{f}|\mathbf{y} \sim \mathcal{N}(\mathbf{K}(\mathbf{K} + \sigma^2 I)^{-1}\mathbf{y}, \mathbf{K} - \mathbf{K}(\mathbf{K} + \sigma^2 I)^{-1}\mathbf{K})$

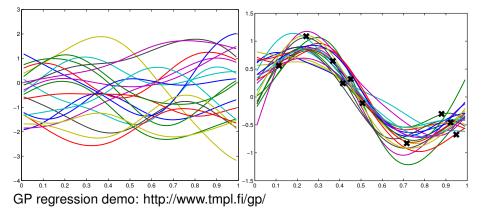
 Posterior predictive distribution: Suppose x' is a test set. We can extend our model to include the function values f' at the test set:

$$\begin{aligned} \begin{pmatrix} \mathbf{f} \\ \mathbf{f'} \end{pmatrix} | \mathbf{x}, \mathbf{x'} &\sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{K}_{\mathbf{xx}} & \mathbf{K}_{\mathbf{xx'}} \\ \mathbf{K}_{\mathbf{x'x}} & \mathbf{K}_{\mathbf{x'x'}} \end{pmatrix} \right) \\ \mathbf{y} | \mathbf{f} &\sim \mathcal{N}(\mathbf{f}, \sigma^2 \mathbf{I}) \end{aligned}$$

where **K**_{**xx**'} is matrix with (i, j)-th entry $k(x_i, x'_j)$.

Some manipulation of multivariate normals gives:

 $\mathbf{f}'|\mathbf{y} \sim \mathcal{N}\left(\mathbf{K}_{\mathbf{x}'\mathbf{x}}(\mathbf{K}_{\mathbf{x}\mathbf{x}} + \sigma^2 I)^{-1}\mathbf{y}, \mathbf{K}_{\mathbf{x}'\mathbf{x}'} - \mathbf{K}_{\mathbf{x}'\mathbf{x}}(\mathbf{K}_{\mathbf{x}\mathbf{x}} + \sigma^2 I)^{-1}\mathbf{K}_{\mathbf{x}\mathbf{x}'}\right)$



Summary

- A whirlwind journey through data mining and machine learning techniques:
 - **Unsupervised learning**: PCA, MDS, Isomap, Hierarchical clustering, K-means, spectral clustering, mixture modelling, EM algorithm, collaborative filtering, biclustering.
 - **Supervised learning**: Empirical risk minimisation, logistic regression, support vector machines, kernel methods and Gaussian processes.
 - **Conceptual frameworks**: prediction, performance evaluation, generalisation, overfitting, regularisation, hypothesis spaces, model complexity.
 - **Theory**: statistical learning theory, convex optimisation, Bayesian vs. frequentist learning, parametric vs non-parametric learning.
- **Topics we did not cover**: neural networks and deep learning, generative adversarial training, decision trees and random forests, boosting, semisupervised learning, online learning, reinforcement learning, Bayesian optimisation, probabilistic numerics... we just scratched the surface!

Further resources:

- Machine Learning Summer Schools, videolectures.net.
- Conferences: NIPS, ICML, UAI, AISTATS.

Thank You!