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Parametric vs Nonparametric models

Parametric models have a fixed finite number of parameters, regardless
of the dataset size. In the Bayesian setting, given the parameter vector θ,
the predictions are independent of the data D.

p(x̃, θ|D) = p(θ|D)p(x̃|θ)

Parameters can be thought of as a data summary: communication
channel flows from data to the predictions through the parameters.

Nonparametric models allow the number of “parameters” to grow with
the dataset size. Alternatively, predictions depend on the data (and the
hyperparameters).
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Regression
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We are given a dataset D = {(xi, yi)}n
i=1, xi ∈ Rp, yi ∈ R.

Regression: learn the underlying real-valued function f (x).
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Different Flavours of Regression

We can model response yi as a noisy version of the underlying function f
evaluated at input xi:

yi|f (xi) ∼ N (f (xi), σ
2)

Appropriate loss: L(y, f (x)) = (y− f (x))2

Frequentist Parametric approach: model f as fθ for some parameter
vector θ. Fit θ by ML / ERM with squared loss (linear regression).
Frequentist Nonparametric approach: model f as the unknown
parameter taking values in an infinite-dimensional space of functions. Fit
f by regularized ML / ERM with squared loss (kernel ridge regression)
Bayesian Parametric approach: model f as fθ for some parameter
vector θ. Put a prior on θ and compute a posterior p(θ|D) (Bayesian linear
regression).
Bayesian Nonparametric approach: treat f as the random variable
taking values in an infinite-dimensional space of functions. Put a prior
over functions f ∈ F , and compute a posterior p(f |D) (Gaussian Process
regression).
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Just work with the function values at
the inputs f = (f (x1), . . . , f (xn))

>

What properties of the function can
we incorporate?

Multivariate normal prior on f:

f ∼ N (0,K)

Use a kernel function k to define K:

Kij = k(xi, xj)

Expect regression functions to be
smooth: If x and x′ are close by, then
f (x) and f (x′) have similar values, i.e.
strongly correlated.(

f (x)
f (x′)

)
∼ N

((
0
0

)
,

(
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

))

The prior p(f) encodes our prior
knowledge about the function.
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Model:

f ∼ N (0,K)

yi|fi ∼ N (fi, σ2)
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What does a multivariate normal prior mean?
Imagine x forms an infinitesimally dense grid of data space. Simulate
prior draws

f ∼ N (0,K)

Plot fi vs xi for i = 1, . . . , n.
The corresponding prior over functions is called a Gaussian Process
(GP): any finite number of evaluations of which follow a Gaussian
distribution.
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Different kernels lead to different function characteristics.

Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006.
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f|x ∼ N (0,K)

y|f ∼ N (f, σ2I)

Posterior distribution:

f|y ∼ N (K(K + σ2I)−1y,K−K(K + σ2I)−1K)

Posterior predictive distribution: Suppose x′ is a test set. We can extend
our model to include the function values f′ at the test set:(

f
f′

)
|x, x′ ∼ N

((
0
0

)
,

(
Kxx Kxx′

Kx′x Kx′x′

))
y|f ∼ N (f, σ2I)

where Kxx′ is matrix with (i, j)-th entry k(xi, x′j).
Some manipulation of multivariate normals gives:

f′|y ∼ N
(
Kx′x(Kxx + σ2I)−1y,Kx′x′ −Kx′x(Kxx + σ2I)−1Kxx′

)
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Gaussian Processes
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GP regression demo: http://www.tmpl.fi/gp/
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Summary

A whirlwind journey through data mining and machine learning
techniques:

Unsupervised learning: PCA, MDS, Isomap, Hierarchical clustering,
K-means, spectral clustering, mixture modelling, EM algorithm, collaborative
filtering, biclustering.
Supervised learning: Empirical risk minimisation, logistic regression,
support vector machines, kernel methods and Gaussian processes.
Conceptual frameworks: prediction, performance evaluation,
generalisation, overfitting, regularisation, hypothesis spaces, model
complexity.
Theory: statistical learning theory, convex optimisation, Bayesian vs.
frequentist learning, parametric vs non-parametric learning.

Topics we did not cover: neural networks and deep learning, generative
adversarial training, decision trees and random forests, boosting,
semisupervised learning, online learning, reinforcement learning,
Bayesian optimisation, probabilistic numerics... we just scratched the
surface!
Further resources:

Machine Learning Summer Schools, videolectures.net.
Conferences: NIPS, ICML, UAI, AISTATS.

Thank You!
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