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Bayesian Learning Review of Bayesian Inference

Maximum Likelihood Principle

Assume we have a generative model for training data D = {(xi, yi)}n
i=1

given a parameter vector θ:

yi ∼ (π1, . . . , πK), xi|yi = k, θ ∼ gk(x|θ) = p(x|φk)

k-th class conditional density assumed to have a parametric form for
gk(x) = p(x|φk) and all parameters are collated into
θ = (π1, . . . , πK ;φ1, . . . , φK)
Generative process defines the likelihood function: the joint distribution
of all the observed data p(D|θ) given a parameter vector θ.
Frequentist learning approach: compute the MLE θ̂ of θ based on D:

θ̂ = argmax
θ∈Θ

p(D|θ)

We can then use a plug-in approach to compute probabilities of a new
example x̃ being in class k:

p(ỹ = k|x̃, θ̂) =
p
(

x̃, ỹ = k|θ̂
)

p
(

x̃|θ̂
) =

π̂kp(x|φ̂k)∑K
j=1 π̂jp(x|φ̂j)

.
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Bayesian Learning Review of Bayesian Inference

The Bayesian Learning Framework

Bayesian learning: treat parameter vector θ as a random variable:
process of learning is then computation of the posterior distribution
p(θ|D).
In addition to the likelihood p(D|θ) need to specify a prior distribution
p(θ).
Posterior distribution is then given by the Bayes Theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)

Likelihood: p(D|θ)
Prior: p(θ)

Posterior: p(θ|D)
Marginal likelihood: p(D) =

∫
Θ

p(D|θ)p(θ)dθ

Summarizing the posterior:
Posterior mode: θ̂MAP = argmaxθ∈Θ p(θ|D) (maximum a posteriori).
Posterior mean: θ̂mean = E [θ|D].
Posterior variance: Var[θ|D].
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Bayesian Learning Review of Bayesian Inference

Simple Example: Coin Tosses

A simple example: We have a coin with probability φ of coming up heads.
Model coin tosses as i.i.d. Bernoullis, 1 =head, 0 =tail.
Estimate φ given a dataset D = {xi}n

i=1 of tosses.

p(D|φ) = φn1(1− φ)n0

with nj =
∑n

i=1 1{xi = j}.
Maximum Likelihood estimate:

φ̂ML =
n1

n

Bayesian approach: treat the unknown parameter φ as a random
variable. Simple prior: φ ∼ Uniform[0, 1], i.e., p(φ) = 1 for φ ∈ [0, 1].
Posterior distribution:

p(φ|D) = p(D|θ)p(θ)
p(D) =

φn1(1− φ)n0 · 1
p(D) , p(D) =

∫ 1

0
φn1(1− φ)n0 dφ =

(n + 1)!
n1!n0!

Posterior is a Beta(n1 + 1, n0 + 1) distribution: φ̂mean = n1+1
n+2 .
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Bayesian Learning Review of Bayesian Inference

Simple Example: Coin Tosses
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Posterior bbehaves like the ML estimate as dataset grows and is peaked at
true value φ∗ = 0.7.
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Bayesian Learning Review of Bayesian Inference

Simple Example: Coin Tosses

All Bayesian reasoning is based on the posterior distribution.
Posterior mode: φ̂MAP = n1

n

Posterior mean: φ̂mean = n1+1
n+2

Posterior variance: Var[φ|D] = 1
n+3 φ̂

mean(1− φ̂mean)

(1− α)-credible regions: (l, r) ⊂ [0, 1] s.t.
∫ r

l p(θ|D)dθ = 1− α.

Consistency: Assuming that the true parameter value φ∗ is given a
non-zero density under the prior, the posterior distribution concentrates
around the true value as n→∞.

Department of Statistics, Oxford SC4/SM4 DMML, HT2017 7 / 21



Bayesian Learning Review of Bayesian Inference

Simple Example: Coin Tosses

The posterior predictive distribution is the conditional distribution of
xn+1 given D = {xi}n

i=1:

p(xn+1|D) =

∫ 1

0
p(xn+1|φ,D)p(φ|D)dφ

=

∫ 1

0
p(xn+1|φ)p(φ|D)dφ

= (φ̂mean)xn+1(1− φ̂mean)1−xn+1

We predict on new data by averaging the predictive distribution over the
posterior. Accounts for uncertainty about φ. Note that the frequentist
prediction would be p(xn+1|φ̂ML).
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Bayesian Learning Review of Bayesian Inference

Simple Example: Coin Tosses

In this example, the posterior distribution has a known analytic form and
is in the same Beta family as the prior: Uniform[0, 1] ≡ Beta(1, 1).
An example of a conjugate prior.
A Beta distribution Beta(a, b) with parameters a, b > 0 is an exponential
family distribution with density

p(φ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
φa−1(1− φ)b−1

where Γ(t) =
∫∞

0 ut−1e−udu is the gamma function.
If the prior is φ ∼ Beta(a, b), then the posterior distribution is

p(φ|D, a, b) =∝ φa+n1−1(1− φ)b+n0−1

so is Beta(a + n1, b + n0).
Hyperparameters a and b are pseudo-counts, an imaginary initial
sample that reflects our prior beliefs about φ.
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Bayesian Learning Review of Bayesian Inference

Beta Distributions
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Bayesian Learning Review of Bayesian Inference

Bayesian Inference on the Categorical Distribution

Suppose we observe the with yi ∈ {1, . . . ,K}, and model them as i.i.d.
with pmf π = (π1, . . . , πK):

p(D|π) =

n∏
i=1

πyi =

K∏
k=1

πnk
k

with nk =
∑n

i=1 1(yi = k) and πk > 0,
∑K

k=1 πk = 1.
The conjugate prior on π is the Dirichlet distribution Dir(α1, . . . , αK) with
parameters αk > 0, and density

p(π) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k

on the probability simplex {π : πk > 0,
∑K

k=1 πk = 1}.
The posterior is also Dirichlet Dir(α1 + n1, . . . , αK + nK).
Posterior mean is

π̂mean
k =

αk + nk∑K
j=1 αj + nj

.
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Bayesian Learning Review of Bayesian Inference

Dirichlet Distributions

(A) Support of the Dirichlet density for K = 3.
(B) Dirichlet density for αk = 10.
(C) Dirichlet density for αk = 0.1.
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Bayesian Learning Being Bayesian about Naïve Bayes

Naïve Bayes

Consider the classification example with naïve Bayes classifier:

p(xi|φk) =

p∏
j=1

φ
x(j)

i
kj (1− φkj)

1−x(j)
i .

Set nk =
∑n

i=1 1{yi = k}, nkj =
∑n

i=1 1{yi = k, x(j)
i = 1}. MLEs are:

π̂k =
nk

n
, φ̂kj =

∑
i:yi=k x(j)

i

nk
=

nkj

nk
.

A problem: if the `-th word did not appear in documents labelled as class
k then φ̂k` = 0 and

P(Y = k|X = x with `-th entry equal to 1)

∝ π̂k

p∏
j=1

(
φ̂kj

)x(j) (
1− φ̂kj

)1−x(j)

= 0

i.e. we will never attribute a new document containing word ` to class k
(regardless of other words in it).
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Bayesian Learning Being Bayesian about Naïve Bayes

Bayesian Inference on Naïve Bayes model

Under the Naïve Bayes model, the joint distribution of labels
yi ∈ {1, . . . ,K} and data vectors xi ∈ {0, 1}p is

p(D|θ) =

n∏
i=1

p(xi, yi|θ) =

n∏
i=1

K∏
k=1

πk

p∏
j=1

φ
x(j)

i
kj (1− φkj)

1−x(j)
i

1(yi=k)

=

K∏
k=1

πnk
k

p∏
j=1

φ
nkj
kj (1− φkj)

nk−nkj

where nk =
∑n

i=1 1(yi = k), nkj =
∑n

i=1 1(yi = k, x(j)
i = 1).

For conjugate prior, we can use Dir((αk)
K
k=1) for π, and Beta(a, b) for φkj

independently.
Because the likelihood factorises, the posterior distribution over π and
(φkj) also factorises, and posterior for π is Dir((αk + nk)

K
k=1), and for φkj is

Beta(a + nkj, b + nk − nkj).
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Bayesian Learning Being Bayesian about Naïve Bayes

Bayesian Inference on Naïve Bayes model

Given D = {(xi, yi)}n
i=1, want to predict a label ỹ for a new document x̃.

We can calculate

p(x̃, ỹ = k|D) = p(ỹ = k|D)p(x̃|ỹ = k,D)

with

p(ỹ = k|D) =
αk + nk∑K
l=1 αl + n

, p(x̃(j) = 1|ỹ = k,D) =
a + nkj

a + b + nk
.

Predicted class is

p(ỹ = k|x̃,D) =
p(ỹ = k|D)p(x̃|ỹ = k,D)

p(x̃|D)

∝ αk + nk∑K
l=1 αl + n

p∏
j=1

(
a + nkj

a + b + nk

)x̃(j) (
b + nk − nkj

a + b + nk

)1−x̃(j)

Compared to ML plug-in estimator, pseudocounts help to “regularize”
probabilities away from extreme values.
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Bayesian Learning Bayesian Model Selection

Bayesian Learning and Regularisation

Consider a Bayesian approach to logistic regression: introduce a
multivariate normal prior for weight vector w ∈ Rp, and a uniform
(improper) prior for offset b ∈ R. The prior density is:

p(b,w) = 1 · (2πσ2)−
p
2 exp

(
− 1

2σ2 ‖w‖
2
2

)
The posterior is

p(b,w|D) ∝ exp

(
− 1

2σ2 ‖w‖
2
2 −

n∑
i=1

log(1 + exp(−yi(b + w>xi)))

)
The posterior mode is equivalent to minimising the L2-regularised
empirical risk.
Regularised empirical risk minimisation is (often) equivalent to having a
prior and finding a MAP estimate of the parameters.

L2 regularisation - multivariate normal prior.
L1 regularisation - multivariate Laplace prior.

From a Bayesian perspective, the MAP parameters are just one way to
summarise the posterior distribution.
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Bayesian Learning Bayesian Model Selection

Bayesian Model Selection

A modelM with a given set of parameters θM consists of both the
likelihood p(D|θM) and the prior distribution p(θM).
The posterior distribution

p(θM|D,M) =
p(D|θM,M)p(θM|M)

p(D|M)

Marginal probability of the data underM (Bayesian model evidence):

p(D|M) =

∫
Θ

p(D|θM,M)p(θM|M)dθ

Compare models using their Bayes factors p(D|M)
p(D|M′)
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Bayesian Learning Bayesian Model Selection

Bayesian Occam’s Razor

Occam’s Razor: of two explanations adequate to explain the same set of
observations, the simpler should be preferred.

p(D|M) =

∫
Θ

p(D|θM,M)p(θM|M)dθ

Model evidence p(D|M) is the probability that a set of randomly selected
parameter values inside the model would generate dataset D.
Models that are too simple are unlikely to generate the observed dataset.
Models that are too complex can generate many possible dataset, so
again, they are unlikely to generate that particular dataset at random.
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Bayesian Learning Bayesian Model Selection

Bayesian model comparison: Occam’s razor at work
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Bayesian Learning Discussion and Further Reading

Bayesian Learning – Discussion

Use probability distributions to reason about uncertainties of parameters
(latent variables and parameters are treated in the same way).
Model consists of the likelihood function and the prior distribution on
parameters: allows to integrate prior beliefs and domain knowledge.
Bayesian computation — most posteriors are intractable, and posterior
needs to be approximated by:

Laplace approximation (model posteriors as normal distributions).
Monte Carlo methods (MCMC and SMC).
Variational methods (variational Bayes, expectation propagation).

Prior usually has hyperparameters, i.e., p(θ) = p(θ|ψ). How to choose ψ?
Be Bayesian about ψ as well — choose a hyperprior p(ψ) and compute
p(ψ|D): integrate the predictive posterior over hyperparameters.
Maximum Likelihood II — ψ̂ = argmaxψ∈Ψ p(D|ψ).

p(D|ψ) =

∫
p(D|θ)p(θ|ψ)dθ

p(ψ|D) =
p(D|ψ)p(ψ)

p(D)
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Bayesian Learning Discussion and Further Reading

Bayesian Learning – Further Reading

Videolectures by Zoubin Ghahramani:
Bayesian Learning and Graphical models.

Gelman et al. Bayesian Data Analysis.
Kevin Murphy. Machine Learning: a Probabilistic Perspective.
E. T. Jaynes. Probability Theory: The Logic of Science.
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