SC4/SM4 Data Mining and Machine Learning Bayesian Learning

Dino Sejdinovic

Department of Statistics
Oxford

Slides and other materials available at:

http://www.stats.ox.ac.uk/~sejdinov/dmml

Bayesian Learning

Maximum Likelihood Principle

• Assume we have a generative model for training data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ given a parameter vector θ :

$$y_i \sim (\pi_1, \dots, \pi_K), \quad x_i | y_i = k, \theta \sim g_k(x|\theta) = p(x|\phi_k)$$

- k-th class conditional density assumed to have a parametric form for $g_k(x) = p(x|\phi_k)$ and all parameters are collated into $\theta = (\pi_1, \dots, \pi_K; \phi_1, \dots, \phi_K)$
- Generative process defines the **likelihood function**: the joint distribution of all the observed data $p(\mathcal{D}|\theta)$ given a parameter vector θ .
- Frequentist learning approach: compute the MLE $\widehat{\theta}$ of θ based on \mathcal{D} :

$$\widehat{\theta} = \operatorname*{argmax}_{\theta \in \Theta} p(\mathcal{D}|\theta)$$

• We can then use a plug-in approach to compute probabilities of a new example \tilde{x} being in class k:

$$p(\tilde{y} = k | \tilde{x}, \widehat{\theta}) = \frac{p\left(\tilde{x}, \tilde{y} = k | \widehat{\theta}\right)}{p\left(\tilde{x} | \widehat{\theta}\right)} = \frac{\widehat{\pi}_k p(x | \widehat{\phi}_k)}{\sum_{j=1}^K \widehat{\pi}_j p(x | \widehat{\phi}_j)}.$$

The Bayesian Learning Framework

- Bayesian learning: treat parameter vector θ as a random variable: process of learning is then computation of the posterior distribution $p(\theta|\mathcal{D})$.
- In addition to the likelihood $p(\mathcal{D}|\theta)$ need to specify a **prior distribution** $p(\theta)$.
- Posterior distribution is then given by the Bayes Theorem:

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$$

- Likelihood: $p(\mathcal{D}|\theta)$
- Prior: $p(\theta)$

- Posterior: $p(\theta|\mathcal{D})$
- Marginal likelihood: $p(\mathcal{D}) = \int_{\Theta} p(\mathcal{D}|\theta)p(\theta)d\theta$
- Summarizing the posterior:
 - Posterior mode: $\widehat{\theta}^{\text{MAP}} = \operatorname{argmax}_{\theta \in \Theta} p(\theta | \mathcal{D})$ (maximum a posteriori).
 - Posterior mean: $\widehat{\theta}^{\text{mean}} = \mathbb{E}\left[\theta|\mathcal{D}\right]$.
 - Posterior variance: $Var[\theta|\mathcal{D}]$.

- A simple example: We have a coin with probability ϕ of coming up heads. Model coin tosses as i.i.d. Bernoullis, 1 = head, 0 = tail.
- Estimate ϕ given a dataset $\mathcal{D} = \{x_i\}_{i=1}^n$ of tosses.

$$p(\mathcal{D}|\phi) = \phi^{n_1}(1-\phi)^{n_0}$$

with $n_j = \sum_{i=1}^n \mathbf{1}\{x_i = j\}.$

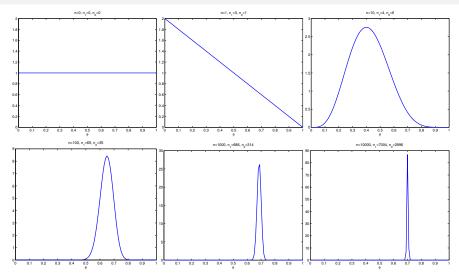
• Maximum Likelihood estimate:

$$\hat{\phi}^{\mathsf{ML}} = \frac{n_1}{n}$$

• Bayesian approach: treat the unknown parameter ϕ as a random variable. Simple prior: $\phi \sim \mathsf{Uniform}[0,1]$, i.e., $p(\phi) = 1$ for $\phi \in [0,1]$. Posterior distribution:

$$p(\phi|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{\phi^{n_1}(1-\phi)^{n_0} \cdot 1}{p(\mathcal{D})}, \quad p(\mathcal{D}) = \int_0^1 \phi^{n_1}(1-\phi)^{n_0}d\phi = \frac{(n+1)!}{n_1!n_0!}$$

Posterior is a Beta (n_1+1,n_0+1) distribution: $\widehat{\phi}^{\text{mean}} = \frac{n_1+1}{n+2}$.



Posterior bbehaves like the ML estimate as dataset grows and is peaked at true value $\phi^*=0.7$.

- All Bayesian reasoning is based on the posterior distribution.
 - Posterior mode: $\widehat{\phi}^{MAP} = \frac{n_1}{n}$
 - Posterior mean: $\hat{\phi}^{\text{mean}} = \frac{n_1 + 1}{n + 2}$
 - Posterior variance: $Var[\phi|\mathcal{D}] = \frac{1}{n+3} \widehat{\phi}^{\text{mean}} (1 \widehat{\phi}^{\text{mean}})$
 - $(1-\alpha)$ -credible regions: $(l,r)\subset [0,1]$ s.t. $\int_{l}^{r}p(\theta|\mathcal{D})d\theta=1-\alpha$.
- Consistency: Assuming that the true parameter value ϕ^* is given a non-zero density under the prior, the posterior distribution concentrates around the true value as $n \to \infty$.

• The **posterior predictive distribution** is the conditional distribution of x_{n+1} given $\mathcal{D} = \{x_i\}_{i=1}^n$:

$$p(x_{n+1}|\mathcal{D}) = \int_0^1 p(x_{n+1}|\phi, \mathcal{D}) p(\phi|\mathcal{D}) d\phi$$
$$= \int_0^1 p(x_{n+1}|\phi) p(\phi|\mathcal{D}) d\phi$$
$$= (\widehat{\phi}^{\mathsf{mean}})^{x_{n+1}} (1 - \widehat{\phi}^{\mathsf{mean}})^{1 - x_{n+1}}$$

• We predict on new data by **averaging** the predictive distribution over the posterior. Accounts for uncertainty about ϕ . Note that the frequentist prediction would be $p(x_{n+1}|\widehat{\phi}^{ML})$.

- In this example, the posterior distribution has a known analytic form and is in the same Beta family as the prior: Uniform[0, 1] ≡ Beta(1, 1).
- An example of a conjugate prior.
- A Beta distribution Beta(a, b) with parameters a, b > 0 is an exponential family distribution with density

$$p(\phi|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \phi^{a-1} (1-\phi)^{b-1}$$

where $\Gamma(t) = \int_0^\infty u^{t-1} e^{-u} du$ is the gamma function.

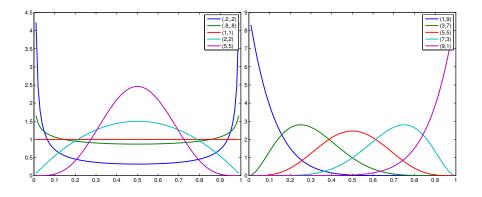
• If the prior is $\phi \sim \text{Beta}(a, b)$, then the posterior distribution is

$$p(\phi|\mathcal{D}, a, b) = \propto \phi^{a+n_1-1} (1-\phi)^{b+n_0-1}$$

so is Beta($a + n_1, b + n_0$).

• Hyperparameters a and b are **pseudo-counts**, an imaginary initial sample that reflects our prior beliefs about ϕ .

Beta Distributions



Bayesian Inference on the Categorical Distribution

• Suppose we observe the with $y_i \in \{1, ..., K\}$, and model them as i.i.d. with pmf $\pi = (\pi_1, ..., \pi_K)$:

$$p(\mathcal{D}|\pi) = \prod_{i=1}^{n} \pi_{y_i} = \prod_{k=1}^{K} \pi_k^{n_k}$$

with $n_k = \sum_{i=1}^{n} \mathbf{1}(y_i = k)$ and $\pi_k > 0$, $\sum_{k=1}^{K} \pi_k = 1$.

• The conjugate prior on π is the Dirichlet distribution $Dir(\alpha_1, \dots, \alpha_K)$ with parameters $\alpha_k > 0$, and density

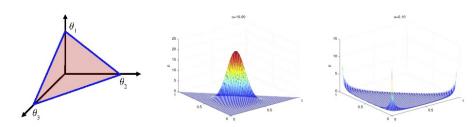
$$p(\pi) = \frac{\Gamma(\sum_{k=1}^K \alpha_k)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K \pi_k^{\alpha_k - 1}$$

on the probability simplex $\{\pi : \pi_k > 0, \sum_{k=1}^K \pi_k = 1\}$.

- The posterior is also Dirichlet $Dir(\alpha_1 + n_1, \dots, \alpha_K + n_K)$.
- Posterior mean is

$$\widehat{\pi}_k^{\mathsf{mean}} = \frac{lpha_k + n_k}{\sum_{j=1}^K lpha_j + n_j}.$$

Dirichlet Distributions



- (A) Support of the Dirichlet density for K = 3.
- (B) Dirichlet density for $\alpha_k = 10$.
- (C) Dirichlet density for $\alpha_k = 0.1$.

Naïve Bayes

Consider the classification example with naïve Bayes classifier:

$$p(x_i|\phi_k) = \prod_{j=1}^p \phi_{kj}^{x_i^{(j)}} (1 - \phi_{kj})^{1 - x_i^{(j)}}.$$

• Set $n_k = \sum_{i=1}^n \mathbf{1}\{y_i = k\}, n_{kj} = \sum_{i=1}^n \mathbf{1}\{y_i = k, x_i^{(j)} = 1\}$. MLEs are:

$$\hat{\pi}_k = \frac{n_k}{n},$$

$$\hat{\phi}_{kj} = \frac{\sum_{i:y_i=k} x_i^{(j)}}{n_k} = \frac{n_{kj}}{n_k}.$$

• A problem: if the ℓ -th word did not appear in documents labelled as class k then $\hat{\phi}_{k\ell}=0$ and

$$\mathbb{P}(Y = k | X = x \text{ with } \ell\text{-th entry equal to 1})$$

$$\propto \hat{\pi}_k \prod_{j=1}^p \left(\hat{\phi}_{kj}\right)^{x^{(j)}} \left(1 - \hat{\phi}_{kj}\right)^{1 - x^{(j)}} = 0$$

i.e. we will never attribute a new document containing word ℓ to class k (regardless of other words in it).

Bayesian Inference on Naïve Bayes model

• Under the Naïve Bayes model, the joint distribution of labels $y_i \in \{1, ..., K\}$ and data vectors $x_i \in \{0, 1\}^p$ is

$$p(\mathcal{D}|\theta) = \prod_{i=1}^{n} p(x_i, y_i|\theta) = \prod_{i=1}^{n} \prod_{k=1}^{K} \left(\pi_k \prod_{j=1}^{p} \phi_{kj}^{x_i^{(j)}} (1 - \phi_{kj})^{1 - x_i^{(j)}} \right)^{1(y_i = k)}$$

$$= \prod_{k=1}^{K} \pi_k^{n_k} \prod_{j=1}^{p} \phi_{kj}^{n_{kj}} (1 - \phi_{kj})^{n_k - n_{kj}}$$

where
$$n_k = \sum_{i=1}^n \mathbf{1}(y_i = k)$$
, $n_{kj} = \sum_{i=1}^n \mathbf{1}(y_i = k, x_i^{(j)} = 1)$.

- For conjugate prior, we can use $\mathrm{Dir}((\alpha_k)_{k=1}^K)$ for π , and $\mathrm{Beta}(a,b)$ for ϕ_{kj} independently.
- Because the likelihood factorises, the posterior distribution over π and (ϕ_{kj}) also factorises, and posterior for π is $Dir((\alpha_k + n_k)_{k=1}^K)$, and for ϕ_{kj} is $Beta(a + n_{kj}, b + n_k n_{kj})$.

Bayesian Inference on Naïve Bayes model

• Given $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, want to predict a label \tilde{y} for a new document \tilde{x} . We can calculate

$$p(\tilde{x}, \tilde{y} = k|\mathcal{D}) = p(\tilde{y} = k|\mathcal{D})p(\tilde{x}|\tilde{y} = k, \mathcal{D})$$

with

$$p(\tilde{y}=k|\mathcal{D}) = \frac{\alpha_k + n_k}{\sum_{l=1}^K \alpha_l + n}, \quad p(\tilde{x}^{(j)}=1|\tilde{y}=k,\mathcal{D}) = \frac{a + n_{kj}}{a + b + n_k}.$$

Predicted class is

$$p(\tilde{y} = k | \tilde{x}, \mathcal{D}) = \frac{p(\tilde{y} = k | \mathcal{D})p(\tilde{x} | \tilde{y} = k, \mathcal{D})}{p(\tilde{x} | \mathcal{D})}$$

$$\propto \frac{\alpha_k + n_k}{\sum_{l=1}^K \alpha_l + n} \prod_{i=1}^p \left(\frac{a + n_{kj}}{a + b + n_k}\right)^{\tilde{x}^{(j)}} \left(\frac{b + n_k - n_{kj}}{a + b + n_k}\right)^{1 - \tilde{x}^{(j)}}$$

 Compared to ML plug-in estimator, pseudocounts help to "regularize" probabilities away from extreme values.

Bayesian Learning and Regularisation

• Consider a Bayesian approach to logistic regression: introduce a multivariate normal prior for weight vector $w \in \mathbb{R}^p$, and a uniform (improper) prior for offset $b \in \mathbb{R}$. The prior density is:

$$p(b, w) = 1 \cdot (2\pi\sigma^2)^{-\frac{p}{2}} \exp\left(-\frac{1}{2\sigma^2} \|w\|_2^2\right)$$

The posterior is

$$p(b, w|\mathcal{D}) \propto \exp\left(-\frac{1}{2\sigma^2}||w||_2^2 - \sum_{i=1}^n \log(1 + \exp(-y_i(b + w^{\top}x_i)))\right)$$

- The posterior mode is equivalent to minimising the L₂-regularised empirical risk.
- Regularised empirical risk minimisation is (often) equivalent to having a prior and finding a MAP estimate of the parameters.
 - L₂ regularisation multivariate normal prior.
 - L₁ regularisation multivariate Laplace prior.
- From a Bayesian perspective, the MAP parameters are just one way to summarise the posterior distribution.

Bayesian Model Selection

- A model \mathcal{M} with a given set of parameters $\theta_{\mathcal{M}}$ consists of both the likelihood $p(\mathcal{D}|\theta_{\mathcal{M}})$ and the prior distribution $p(\theta_{\mathcal{M}})$.
- The posterior distribution

$$p(\theta_{\mathcal{M}}|\mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D}|\theta_{\mathcal{M}}, \mathcal{M})p(\theta_{\mathcal{M}}|\mathcal{M})}{p(\mathcal{D}|\mathcal{M})}$$

• Marginal probability of the data under \mathcal{M} (Bayesian model evidence):

$$p(\mathcal{D}|\mathcal{M}) = \int_{\Theta} p(\mathcal{D}|\theta_{\mathcal{M}}, \mathcal{M}) p(\theta_{\mathcal{M}}|\mathcal{M}) d\theta$$

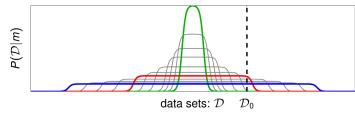
• Compare models using their **Bayes factors** $\frac{p(\mathcal{D}|\mathcal{M})}{p(\mathcal{D}|\mathcal{M}')}$

Bayesian Occam's Razor

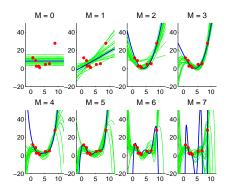
 Occam's Razor: of two explanations adequate to explain the same set of observations, the simpler should be preferred.

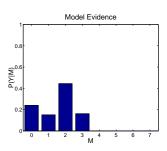
$$p(\mathcal{D}|\mathcal{M}) = \int_{\Theta} p(\mathcal{D}|\theta_{\mathcal{M}}, \mathcal{M}) p(\theta_{\mathcal{M}}|\mathcal{M}) d\theta$$

- Model evidence $p(\mathcal{D}|\mathcal{M})$ is the probability that a set of randomly selected parameter values inside the model would generate dataset \mathcal{D} .
- Models that are too simple are unlikely to generate the observed dataset.
- Models that are too complex can generate many possible dataset, so again, they are unlikely to generate that particular dataset at random.



Bayesian model comparison: Occam's razor at work





Bayesian Learning - Discussion

- Use probability distributions to reason about uncertainties of parameters (latent variables and parameters are treated in the same way).
- Model consists of the likelihood function and the prior distribution on parameters: allows to integrate prior beliefs and domain knowledge.
- Bayesian computation most posteriors are intractable, and posterior needs to be approximated by:
 - Laplace approximation (model posteriors as normal distributions).
 - Monte Carlo methods (MCMC and SMC).
 - Variational methods (variational Bayes, expectation propagation).
- Prior usually has hyperparameters, i.e., $p(\theta) = p(\theta|\psi)$. How to choose ψ ?
 - Be Bayesian about ψ as well choose a hyperprior $p(\psi)$ and compute $p(\psi|\mathcal{D})$: integrate the predictive posterior over hyperparameters.
 - Maximum Likelihood II $\hat{\psi} = \operatorname{argmax}_{\psi \in \Psi} p(\mathcal{D}|\psi)$.

$$p(\mathcal{D}|\psi) = \int p(\mathcal{D}|\theta)p(\theta|\psi)d\theta$$
$$p(\psi|\mathcal{D}) = \frac{p(\mathcal{D}|\psi)p(\psi)}{p(\mathcal{D})}$$

Bayesian Learning – Further Reading

- Videolectures by Zoubin Ghahramani:
 Bayesian Learning and Graphical models.
- Gelman et al. Bayesian Data Analysis.
- Kevin Murphy. Machine Learning: a Probabilistic Perspective.
- E. T. Jaynes. Probability Theory: The Logic of Science.