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Maximum Likelihood Principle

@ Assume we have a generative model for training data D = {(x;,y;)}}_,
given a parameter vector 6:

yiN(ﬂ-lw"vﬂ-K)v xilyi:k79Ngk(x|9):p(x|¢k)
@ k-th class conditional density assumed to have a parametric form for

gr(x) = p(x|¢x) and all parameters are collated into
0= (Wla"'aﬂK;d)la"'v(bI()

@ Generative process defines the likelihood function: the joint distribution
of all the observed data p(D|f) given a parameter vector 6.

@ Frequentist learning approach: compute the MLE 6 of 6 based on D:

f = argmax p(D|0)
9ce

@ We can then use a plug-in approach to compute probabilities of a new
example x being in class k:

~7~ :ké\ ~
p(5 = k|x,0) = p(x y=H ) _ (x|

— = =.
. K ~
p x|0) Zj:17rjp(x|¢j)



The Bayesian Learning Framework

@ Bayesian learning: treat parameter vector ¢ as a random variable:
process of learning is then computation of the posterior distribution

p(0|D).
@ In addition to the likelihood p(D|6) need to specify a prior distribution
p().
@ Posterior distribution is then given by the Bayes Theorem:
p(DI0)p(9)
0|D) = —~—~
p(0|D) (D)
o Likelihood: p(D|0) o Posterior: p(6|D)
@ Prior: p(0) o Marginal likelihood: p(D) = [, p(DI|0)p(6)d6

@ Summarizing the posterior:
o Posterior mode: """ = argmax, ., p(6|D) (maximum a posteriori).

o Posterior mean: ™" = E [| D).
o Posterior variance: Var[f|D].
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Simple Example: Coin Tosses

@ A simple example: We have a coin with probability ¢ of coming up heads.
Model coin tosses as i.i.d. Bernoullis, 1 =head, 0 =tail.

@ Estimate ¢ given a dataset D = {x;}_, of tosses.
p(Dlg) = ¢" (1 —¢)"

@ Maximum Likelihood estimate:

ML i
oM ==

@ Bayesian approach: treat the unknown parameter ¢ as a random
variable. Simple prior: ¢ ~ Uniform|[0, 1], i.e., p(¢) = 1 for ¢ € [0, 1].
Posterior distribution:

p(¢|D) = p(zz\(%;;(a) = Wl(lngs)no L ) :/0 ¢ (1 — ¢)de = %

Posterior is a Beta(n; -+ 1,no + 1) distribution: ¢mean = ntl
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Simple Example: Coin Tosses
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Posterior bbehaves like the ML estimate as dataset grows and is peaked at

true value ¢* = 0.7.
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Simple Example: Coin Tosses

@ All Bayesian reasoning is based on the posterior distribution.
(ZMAP _m

n

o Posterior mode:
o Posterior mean: ¢™*" = "Lt
o Posterior variance: Var[¢|D] = 1 ¢™"(1 — ¢™")
o (1 — «)-credible regions: (I,r) C [0,1] s.t. [/ p(0|D)dO =1 — cv.
@ Consistency: Assuming that the true parameter value ¢* is given a
non-zero density under the prior, the posterior distribution concentrates
around the true value as n — .
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Simple Example: Coin Tosses

@ The posterior predictive distribution is the conditional distribution of
Xnp1 Qiven D = {x;}1_;:

Pl |D) = / P5ns1|6, D)p(6|D)dg
1
- / PConst|6)p(6|D)dd

_ (q’gmean)xwl (1 N g’gmean)lfxn“

@ We predict on new data by averaging the predictive distribution over the
posterior. Accounts for uncertainty about ¢. Note that the frequentist
prediction would be p(x,1|oML).
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Simple Example: Coin Tosses

@ In this example, the posterior distribution has a known analytic form and
is in the same Beta family as the prior: Uniform[0, 1] = Beta(1, 1).

@ An example of a conjugate prior.

@ A Beta distribution Beta(a, ) with parameters a, b > 0 is an exponential
family distribution with density

I'(a+b)
[(a)T(b)

where I'(r) = [ u'~'e™"du is the gamma function.

o If the pr|or is ¢ ~ Beta(a, b), then the posterior distribution is

p(¢la,b) = = mr S0 T (1 = 9)"”

P(¢\D7a,b) = ¢a+n1—l(1 o ¢)b+no—l

so is Beta(a + ny, b + ny).

@ Hyperparameters a and b are pseudo-counts, an imaginary initial
sample that reflects our prior beliefs about ¢.
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Beta Distributions
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Review of Bayesian Inference
Bayesian Inference on the Categorical Distribution

@ Suppose we observe the with y; € {1,..., K}, and model them as i.i.d.
with pmf = = (7, ..., 7k):

K

g

p(0le) =1, =1 =
k=1

with ngy = Z?:] l(y,' = k) and e > 0, Zk:] e = 1.
@ The conjugate prior on 7 is the Dirichlet distribution Dir(ay, . .., ag) with
parameters o, > 0, and density

Zk 1ak) o1
k
Hk 1 ( ) k=1
on the probability simplex {r : m; > 0, Zk:l =1}
@ The posterior is also Dirichlet Dir(«; + ny, ..., ax + ng).
@ Posterior mean is

p(m) =

~mean Qg +

7Tk = =K -
> O+
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Dirichlet Distributions
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(A) Support of the Dirichlet density for K = 3.
(B) Dirichlet density for oy = 10.
(C) Dirichlet density for o, = 0.1.
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Naive Bayes

@ Consider the classification example with naive Bayes classifier:

plxlde) = quk, — gg)'

o Setm = > My =k}, my = S0 1{yi = k,x” = 1}. MLEs are:
Y
Zzh =i X @

T = —, Gy = ——— = —.
n ny ny

@ A problem: if the ¢-th word did not appear in documents labelled as class

k then ¢ = 0 and
P(Y = k|X = x with ¢-th entry equal to 1)
N0 1—x)

x ﬁk]f[l (ngj) (1 - ngj) =0

i.e. we will never attribute a new document containing word ¢ to class k

(regardless of other words in it).
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Being Bayesian about Naive Bayes
Bayesian Inference on Naive Bayes model

@ Under the Naive Bayes model, the joint distribution of labels
yi € {1,...,K} and data vectors x; € {0,1}” is

1(yi=k)
D|9 Hp X”yz|9 HH ’/TkHQSkJ ¢k/
i=1 k=1

p

K
— ”k/ ] _ ¢ nk g
eIl e

where my = >0 1(yi = k), mg = > i 1(yi = k,x,.(i) =1).

@ For conjugate prior, we can use Dir((ax)¥_,) for 7, and Beta(a, b) for ¢;;
independently.

@ Because the likelihood factorises, the posterior distribution over = and

(¢4;) also factorises, and posterior for 7 is Dir((cy + m)_,), and for ¢y is
Beta(a + nyj, b + ng — nyj).
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Being Bayesian about Naive Bayes
Bayesian Inference on Naive Bayes model

@ Given D = {(x;,y:)}_,, want to predict a label y for a new document x.
We can calculate

p(X,y = k|D) = p(y = k|D)p(x|y = k, D)
with
a—+ ny;

O + 1k <0) _atmy
P T a+b+n

py=kD)= ———,
ZIK:I o +n

@ Predicted class is
p(y = k|D)p(¥[y = k, D)
p(xD)

70
o + ng ﬁ( a —+ nyj )x (bJrnknkj)
21[(:10414'”;:1 a-+b+n a-+b+n

@ Compared to ML plug-in estimator, pseudocounts help to “regularize”
probabilities away from extreme values.
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Bayesian Learning and Regularisation

@ Consider a Bayesian approach to logistic regression: introduce a
multivariate normal prior for weight vector w € R?, and a uniform
(improper) prior for offset b € R. The prior density is:

? 1
_ 2\—% 2
plb) = 1+ (2r0%) exp (515wl
@ The posterior is
1 RN T
p(b,wID) o exp (—202|w|2 =2 log(1 + exp(yi(b + x,-»))
@ The posterior mode is equivalent to minimising the L,-regularised
empirical risk.
@ Regularised empirical risk minimisation is (often) equivalent to having a
prior and finding a MAP estimate of the parameters.
e [, regularisation - multivariate normal prior.
e L, regularisation - multivariate Laplace prior.

@ From a Bayesian perspective, the MAP parameters are just one way to
summarise the posterior distribution.
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Bayesian Model Selection

@ A model M with a given set of parameters 0, consists of both the
likelihood p(D|0r¢) and the prior distribution p(6a4).

@ The posterior distribution

P(D|0p, M)p(Ora| M)
p(DIM)

p(eM |Da M) =
@ Marginal probability of the data under M (Bayesian model evidence):
POIM) = [ PO MplO2al )00

D|M)

@ Compare models using their Bayes factors ”(( DI
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Bayesian Learning Bayesian Model Selection

Bayesian Occam’s Razor

@ Occam’s Razor: of two explanations adequate to explain the same set of
observations, the simpler should be preferred.

p(DIM) = / P(Dla, M)p(Ba| M)dB

@ Model evidence p(D|M) is the probability that a set of randomly selected
parameter values inside the model would generate dataset D.

@ Models that are too simple are unlikely to generate the observed dataset.

@ Models that are too complex can generate many possible dataset, so

again, they are unlikely to generate that particular dataset at random.
i

P(D|m)

\\\\\
t

\
k)= == === =

datasets: D Dy
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EEVRENIE el  Bayesian Model Selection

Bayesian model comparison: Occam’s razor at work

Model Evidence

ent of Statistics, O; SC4/SM4 DMML, HT2017 19/21



Discussion and Further Reading
Bayesian Learning — Discussion

@ Use probability distributions to reason about uncertainties of parameters
(latent variables and parameters are treated in the same way).
@ Model consists of the likelihood function and the prior distribution on
parameters: allows to integrate prior beliefs and domain knowledge.
@ Bayesian computation — most posteriors are intractable, and posterior
needs to be approximated by:
e Laplace approximation (model posteriors as normal distributions).
@ Monte Carlo methods (MCMC and SMC).
e Variational methods (variational Bayes, expectation propagation).
@ Prior usually has hyperparameters, i.e., p(¢) = p(6|v). How to choose ¢?
o Be Bayesian about ¢ as well — choose a hyperprior p()) and compute
p(¥|D): integrate the predictive posterior over hyperparameters.
e Maximum Likelihood Il — ¢ = argmax . g, p(D]).

p(DJ) = / (DI0)p(0])d0

p(DY)p(v)

p(1|D) = »(D)
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Discussion and Further Reading
Bayesian Learning — Further Reading

@ Videolectures by Zoubin Ghahramani:
Bayesian Learning and Graphical models.

@ Gelman et al. Bayesian Data Analysis.
@ Kevin Murphy. Machine Learning: a Probabilistic Perspective.
@ E. T. Jaynes. Probability Theory: The Logic of Science.
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