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Support vector classification

Regularised empirical risk minimisation problem with hinge loss.
Regularisation naturally arises from the margin penalty.

min
w,b

(
1
2
‖w‖2 + C

n∑
i=1

(
1− yi

(
w>xi + b

))
+

)
.

Using substitution ξi =
(
1− yi

(
w>xi + b

))
+

, we obtain an equivalent
formulation (primal C-SVM):

min
w,b,ξ

(
1
2
‖w‖2 + C

n∑
i=1

ξi

)
subject to

ξi ≥ 0 yi
(
w>xi + b

)
≥ 1− ξi

A convex constrained optimization problem with affine constraints in w, b, ξ:
strong duality holds.
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Support vector classification

2/‖w‖

w

yi = +1

yi = −1

ξ/‖w‖
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Dual C-SVM

maximize
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj,

subject to the constraints

0 ≤ αi ≤ C,
n∑

i=1

yiαi = 0

From α, obtain the hyperplane with

w =

n∑
i=1

αiyixi.

Offset b can be obtained from any of the margin SVs (for which αi ∈ (0,C)):
1 = yi

(
w>xi + b

)
.
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Dual form and Inner Products

We have stumbled across something quite interesting. Dual program

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjx>i xj subject to

{∑n
i=1 αiyi = 0

0 � α � C

only depends on inputs xi through their inner products (similarities) with other
inputs.
Decision function

f (x) = sign(w>x + b) = sign(

n∑
i=1

αiyix>i x + b)

also depends only on the similarity of a test point x to the training points xi.
Thus, we do not need explicit inputs - just their pairwise similarities.
Key property: even if p > n, it is still the case that w ∈ span {xi : i = 1, . . . , n}
(normal vector of the hyperplane lives in the subspace spanned by the
datapoints).
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Beyond Linear Classifiers
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No linear classifier separates red from blue.
Linear separation after mapping to a higher dimensional feature space:

R2 3
(

x(1) x(2)
)>

= x 7→ ϕ(x) =
(

x(1) x(2) x(1)x(2)
)> ∈ R3
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Non-Linear SVM
Consider the dual C-SVM with explicit non-linear transformation
x 7→ ϕ(x):

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjϕ(xi)
>ϕ(xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C
Suppose p = 2, and we would like to introduce quadratic non-linearities,

ϕ(x) =

(
1,
√

2x(1),
√

2x(2),
√

2x(1)x(2),
(

x(1)
)2
,
(

x(2)
)2
)>

.

Then

ϕ(xi)
>ϕ(xj) = 1 + 2x(1)

i x(1)
j + 2x(2)

i x(2)
j + 2x(1)

i x(2)
i x(1)

j x(2)
j

+
(

x(1)
i

)2 (
x(1)

j

)2
+
(

x(2)
i

)2 (
x(2)

j

)2
= (1 + x>i xj)

2

Since only inner products are needed, non-linear transform need not be
computed explicitly - inner product between features can be a simple
function (kernel) of xi and xj: k(xi, xj) = ϕ(xi)

>ϕ(xj) = (1 + x>i xj)
2

d-order interactions can be implemented by k(xi, xj) = (1 + x>i xj)
d

(polynomial kernel). Never need to compute explicit feature expansion
of dimension

(p+d
d

)
where this inner product happens!
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Kernel SVM: Kernel trick

Kernel SVM with k(xi, xj). Non-linear transformation x 7→ ϕ(x) still present,
but implicit (coordinates of the vector ϕ(x) are never computed).

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk(xi, xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C

Prediction? f (x) = sign
(
w>ϕ(x) + b

)
, where w =

∑n
i=1 αiyiϕ(xi) and offset

b obtained from a margin support vector xj with αj ∈ (0,C).
No need to compute w either! Just need

w>ϕ(x) =
n∑

i=1

αiyiϕ(xi)
>ϕ(x) =

n∑
i=1

αiyik(xi, x).

Get offset from

b = yj − w>ϕ(xj) = yj −
n∑

i=1

αiyik(xi, xj)

for any margin support-vector xj (αj ∈ (0,C)).
Fitted a separating hyperplane in a high-dimensional feature space
without ever mapping explicitly to that space.
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Kernel trick in general

In a learning algorithm, if only inner products x>i xj are explicitly used,
rather than data items xi, xj directly, we can replace them with a kernel
function k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉, where ϕ(x) could be nonlinear, high-
and potentially infinite-dimensional features of the original data.

Kernel ridge regression
Kernel logistic regression
Kernel PCA, CCA, ICA
Kernel K-means
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Kernel and its RKHS

Kernel Methods and
Reproducing Kernel Hilbert Spaces
slides based on Arthur Gretton’s Reproducing kernel Hilbert spaces in Machine
Learning course
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Kernel and its RKHS

Kernel: an inner product between feature maps

Definition (kernel)

Let X be a non-empty set. A function k : X × X → R is a kernel if there
exists a Hilbert space and a map ϕ : X → H such that ∀x, x′ ∈ X ,

k(x, x′) := 〈ϕ(x), ϕ(x′)〉H .

Almost no conditions on X (eg, X itself need not have an inner product,
e.g., documents).
Think of kernel as a similarity measure between features

What are some simple kernels? E.g., for text documents? For images?

A single kernel can correspond to multiple sets of underlying features.

ϕ1(x) = x and ϕ2(x) =
(

x/
√

2 x/
√

2
)>
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Kernel and its RKHS

Positive semidefinite functions

If we are given a “measure of similarity” with two arguments, k(x, x′), how can
we determine if it is a valid kernel?

1 Find a feature map?
Sometimes not obvious (especially if the feature vector is infinite
dimensional)

2 A simpler direct property of the function: positive semidefiniteness.
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Kernel and its RKHS

Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function κ : X × X → R is positive semidefinite if
∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajκ(xi, xj) ≥ 0.

Kernel k(x, y) := 〈ϕ(x), ϕ(y)〉H for a Hilbert space H is positive
semidefinite.

n∑
i=1

n∑
j=1

aiajk(xi, xj) =

n∑
i=1

n∑
j=1

〈aiϕ(xi), ajϕ(xj)〉H

=

∥∥∥∥∥
n∑

i=1

aiϕ(xi)

∥∥∥∥∥
2

H

≥ 0.
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Kernel and its RKHS

Positive semidefinite functions are kernels

Moore-Aronszajn Theorem

Every positive semidefinite function is a kernel for some Hilbert space H.

H is usually thought of as a space of functions
(Reproducing kernel Hilbert space - RKHS)

Gaussian RBF kernel k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

has an infinite-

dimensional H with elements h(x) =
∑m

i=1 aik(xi, x)
(recall that w>ϕ(x) in SVM has exactly this form!).
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Kernel and its RKHS

Reproducing kernel

Definition (Reproducing kernel)

Let H be a Hilbert space of functions f : X → R defined on a non-empty set
X . A function k : X ×X → R is called a reproducing kernel of H if it satisfies

∀x ∈ X , kx = k(·, x) ∈ H,
∀x ∈ X , ∀f ∈ H, 〈f , k(·, x)〉H = f (x) (the reproducing property).

In particular, for any x, y ∈ X , k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.

Can forget all about ϕ(x) and just treat k(·, x) as a feature of x (it is a perfectly
valid Hilbert-space valued feature)!
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Kernel and its RKHS

RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space H of functions f : X → R, defined on a non-empty set X is
said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation
functionals δx : H → R, δxf = f (x) are continuous ∀x ∈ X .

Theorem (Norm convergence implies pointwise convergence)

If limn→∞ ‖fn − f‖H = 0, then limn→∞ fn(x) = f (x), ∀x ∈ X .

If two functions f , g ∈ H are close in the norm of H, then f (x) and g(x) are
close for all x ∈ X
This is a property of particularly “nice” functional spaces. For example,
does not hold on spaces endowed with L2 norm: xn on [0, 1] converges to
0 in L2 but not pointwise.
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Kernel and its RKHS

Back to SVMs

Maximum margin classifier in RKHS: Looking for a decision function of form
sign(w(x)) where w ∈ Hk. Because we are in an RKHS, w = 〈w, k(·, x)〉Hk .

min
w∈Hk

(
1
2
‖w‖2

Hk
+ C

n∑
i=1

h
(
yi 〈w, k(·, xi)〉Hk

))
for the RKHSH with kernel k(x, x′). Maximizing the margin equivalent to
minimizing ‖w‖2

H: for many RKHSs a smoothness constraint on function w
(more about this later).
Why can we solve this infinite-dimensional optimization problem? Because we
know that w ∈ span {k(·, xi) : i = 1, . . . , n} – Representer Theorem.
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Representer Theorem

Representer Theorem
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Representer Theorem

Representer theorem

Standard supervised learning setup: we are given a set of paired
observations (x1, y1), . . . (xn, yn).
Goal: find the function f ∗ in the RKHS H which solves the regularized
empirical risk minimization problem.

min
f∈H

R̂(f ) + Ω
(
‖f‖2
H

)
,

where empirical risk is

R̂(f ) =
1
n

n∑
i=1

L(yi, f (xi), xi),

and Ω is a non-decreasing function.
Classification: L could be a hinge loss L(y, f (x), x) = (1− yf (x))+ or a
logistic loss L(y, f (x), x) = log (1 + exp(−yf (x)).
Regression: L(y, f (x), x) = (y− f (x))2.
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Representer Theorem

Representer theorem

Theorem (Representer Theorem)

There is a solution to
min
f∈H

R̂(f ) + Ω
(
‖f‖2
H

)
that takes the form

f ∗ =

n∑
i=1

αik(·, xi).

If Ω is strictly increasing, all solutions have this form.
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Representer Theorem

Representer theorem: proof

Proof: Denote fs projection of f onto the subspace

span {k(·, xi) : i = 1, . . . , n}

such that
f = fs + f⊥,

where fs =
∑n

i=1 αik(·, xi) and f⊥ is orthogonal to span {k(·, xi) : i = 1, . . . , n}.
Regularizer:

‖f‖2
H = ‖fs‖2

H + ‖f⊥‖2
H ≥ ‖fs‖

2
H ,

then
Ω
(
‖f‖2
H

)
≥ Ω

(
‖fs‖2

H

)
.
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Representer Theorem

Representer theorem: proof

Proof (cont.): Individual terms f (xi) in the loss:

f (xi) = 〈f , k(·, xi)〉H = 〈fs + f⊥, k(·, xi)〉H = 〈fs, k(·, xi)〉H ,

so
L(yi, f (xi), xi) = L(yi, fs(xi), xi)∀i =⇒ R̂(f ) = R̂(fs).

Hence
The empirical risk only depends on the components of f lying in the
subspace spanned by canonical features.
Regularizer Ω(. . .) is minimized when f = fs.
If Ω is strictly non-decreasing, then ‖f⊥‖H = 0 is required at the minimum.
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Kernel Ridge Regression

Kernel Ridge Regression
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Kernel Ridge Regression

Regularised Least Squares

We are given n training points {xi}n
i=1 in Rp: Define some λ > 0. Our goal is:

w∗ = arg min
w∈Rp

(
n∑

i=1

(yi − x>i w)2 + λ‖w‖2

)
= arg min

w∈Rp

(
‖y− Xw‖2

+ λ‖w‖2
)
,

Solution is:

w∗ =
(
X>X + λI

)−1
X>y,

which is the standard regularised least squares solution.

Department of Statistics, Oxford SC4/SM4 DMML, HT2017 24 / 51



Kernel Ridge Regression

Kernel ridge regression

Use features φ(xi) in the place of xi:

w∗ = arg min
w∈H

(
n∑

i=1

(yi − 〈w, φ(xi)〉H)
2

+ λ‖w‖2
H

)
.

E.g. for finite dimensional feature spaces,

φp(x) =


x
x2

...
x`

 φs(x) =


sin(x)
cos(x)
sin(2x)

...
cos
(
`
2 x
)


In finite dimensions, w is a vector of length ` giving weight to each of these
features so that learned function is fw(x) = w>φ(x). Feature vectors can also
have infinite length.
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Kernel Ridge Regression

Kernel ridge regression

Recall that feature maps φ and feature spaces H are not unique, but RKHS
Hk is. Thus, we can identify w with the function fw (there is an isometry
between w and fw: ‖w‖H = ‖fw‖Hk regardless of the choice of the feature
space H) and write

f ∗ = arg min
f∈Hk

(
n∑

i=1

(yi − 〈f , k(·, xi)〉H)
2

+ λ‖f‖2
Hk

)

= arg min
f∈Hk

(
n∑

i=1

(yi − f (xi))
2

+ λ‖f‖2
Hk

)
.
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Kernel Ridge Regression

Kernel ridge regression
Recall the representer theorem: f is a linear combination of feature space
mappings of data points

w =

n∑
i=1

αiφ(xi), fw =

n∑
i=1

αik(xi, ·).

−6 −4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x
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Kernel Ridge Regression

Kernel ridge regression

Recall the representer theorem: f is a linear combination of feature space
mappings of data points

f =

n∑
i=1

αik(·, xi).

Then
n∑

i=1

(
yi − 〈f , k(·, xi)〉Hk

)2
+ λ‖f‖2

Hk
= ‖y−Kα‖2

+ λα>Kα

= y>y− 2y>Kα+ α>
(
K2 + λK

)
α

Differentiating wrt α and setting this to zero, we get

α∗ = (K + λIn)−1y.

Recall: ∂α>Uα
∂α = (U + U>)α, ∂v>α

∂α = ∂α>v
∂α = v
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Kernel Ridge Regression

Parameter selection for KRR

Given the objective

f ∗ = arg min
f∈Hk

(
n∑

i=1

(yi − f (xi))
2

+ λ‖f‖2
Hk

)
.

How do we choose
The regularization parameter λ?
The kernel parameter: for Gaussian kernel, σ in

k(x, y) = exp
(−‖x− y‖2

σ

)
.

Beware: Gaussian kernel has many different parametrisations in the literature
and software packages!
Typically use cross-validation.
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Kernel Ridge Regression

Choice of λ
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Kernel Ridge Regression

Choice of σ
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Operations with Kernels

Kernel Assembly Line
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Operations with Kernels

Examples of kernels

Linear: k(x, x′) = x>x′.
Polynomial: k(x, x′) = (c + x>x′)m, c ∈ R, m ∈ N.

Exponential: k(x, x′) = exp( x>x′
γ ), γ > 0.

Gaussian RBF: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

, γ > 0.

Laplacian: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖
)

, γ > 0.

Rational quadratic: k(x, x′) =

(
1 +
‖x−x′‖2

2αγ2

)−α
, α, γ > 0.

Brownian covariance: k(x, x′) = 1
2 (‖x‖γ + ‖x′‖γ − ‖x− x′‖γ), γ ∈ [0, 2].
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Operations with Kernels

New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)

Given α > 0 and k, k1 and k2 all kernels on X , then αk and k1 + k2 are kernels
on X .

To prove this, just check inner product definition (features get scaled with
√
α

or concatenated). A difference of kernels need not be a kernel (why?)

Lemma (Space transformation)

Let X and X̃ be sets, and consider any map s : X → X̃ . Let k̃ be a kernel on
X̃ . Then k(x, x′) = k̃(s(x), s(x′)) is a kernel on X .

Proof: if ϕ̃ is a feature map for k̃, then ϕ = ϕ̃ ◦ s is a feature map for k.
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Operations with Kernels

New kernels from old: products

Lemma (Products of kernels are kernels)

Given k1 on X1 and k2 on X2, then k1 × k2 is a kernel on X1 ×X2.

Proof.
Sketch for finite-dimensional spaces only. Assume H1 corresponding to k1 is
Rm, and H2 corresponding to k2 is Rn. Define:

k1 := u>v for u, v ∈ Rm (e.g.: kernel between two images)
k2 := p>q for p, q ∈ Rn (e.g.: kernel between two captions)

Is the following a kernel?

K [(u, p); (v, q)] = k1 × k2

(e.g. kernel between one image-caption pair and another)
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Operations with Kernels

New kernels from old: products

Proof.
(continued)

k1k2 =
(
u>v

) (
q>p

)
= trace(u>vq>p)

= trace(pu>vq>)

= 〈A,B〉 ,

where A := pu>, B := qv> (features of image-caption pairs) Thus k1k2 is a
valid kernel, since inner product between A,B ∈ Rm×n is

〈A,B〉 = trace(AB>).

Another way: just note that the Kronecker product of positive definite
matrices is positive definite!
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Operations with Kernels

More products and Taylor expansions

Lemma (Products of kernels are kernels)

Given kernels k1 and k2 on X k1 × k2 is a kernel on X .

Proof: It is certainly a kernel on X × X , so just consider space transformation
s : X → X ×X with s(x) = (x, x).
Another way: just note that the Hadamard product of positive definite
matrices is positive definite!
As a corollary:

k(x, x′) = c +

d∑
j=1

aj〈x, x′〉d (1)

is certainly a kernel. Readily extends to

k(x, x′) = g (〈x, x′〉) (2)

for an analytic function g with nonnegative Taylor coefficients, e.g., exp.
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Operations with Kernels

Gaussian RBF is a kernel

As a product of an exponential kernel and a kernel with 1-d feature
x 7→ exp

(
−‖x‖

2

2γ2

)
.

k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

= exp

(
−‖x‖

2

2γ2

)
exp

(
−‖x

′‖2

2γ2

)
exp

(
1
γ2 〈x, x

′〉
)

All of the proofs above are constructive: they give a way of constructing new
features from old. But the resulting features quickly become very difficult to
interpret. There is another, much cleaner way to do this: Mercer’s Theorem.
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Operations with Kernels

Mercer’s Theorem and Smoothness
What does ‖f‖H have to do with smoothing? For the Gaussian kernel:

f (x) =

∞∑
r=1

arer(x), ‖f‖2
H =

∞∑
r=1

a2
r

λr
.

λr ∼ Br → 0, as r →∞ for B ∈ (0, 1) and er(x) are functions of increasing
complexity as r increases (r zero-crossings) – related to r-th order Hermite
polynomials. Figure from Rasmussen and Williams, 2006
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Operations with Kernels

Examples of kernels

Linear: k(x, x′) = x>x′.
Polynomial: k(x, x′) = (c + x>x′)m, c ∈ R, m ∈ N.

Exponential: k(x, x′) = exp( x>x′
γ ), γ > 0.

Gaussian RBF: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

, γ > 0.

Laplacian: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖
)

, γ > 0.

Rational quadratic: k(x, x′) =

(
1 +
‖x−x′‖2

2αγ2

)−α
, α, γ > 0.

Brownian covariance: k(x, x′) = 1
2 (‖x‖γ + ‖x′‖γ − ‖x− x′‖γ), γ ∈ [0, 2].
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Kernel Embeddings of Distributions

RKHS Embeddings of Distributions
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Kernel Embeddings of Distributions

Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk

replaces x 7→ [ϕ1(x), . . . , ϕs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available
nonlinear decision boundaries, nonlinear
regression functions, learning on
non-Euclidean/structured data

[Cortes & Vapnik, 1995; Schölkopf & Smola,

2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P) = EX∼Pk(·,X) ∈ Hk

replaces P 7→ [Eϕ1(X), . . . ,Eϕs(X)] ∈ Rs

〈µk(P), µk(Q)〉Hk
= EX∼P,Y∼Qk(X, Y)

inner products easy to estimate

multiple instance learning / learning on
distributions, nonparametric testing for
homogeneity, independence, conditional
independence, three-variable interaction
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk

replaces x 7→ [ϕ1(x), . . . , ϕs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available
nonlinear decision boundaries, nonlinear
regression functions, learning on
non-Euclidean/structured data

[Cortes & Vapnik, 1995; Schölkopf & Smola,

2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P) = EX∼Pk(·,X) ∈ Hk

replaces P 7→ [Eϕ1(X), . . . ,Eϕs(X)] ∈ Rs

〈µk(P), µk(Q)〉Hk
= EX∼P,Y∼Qk(X, Y)

inner products easy to estimate
multiple instance learning / learning on
distributions, nonparametric testing for
homogeneity, independence, conditional
independence, three-variable interaction

[Gretton et al, 2005; Gretton et al, 2006;

Fukumizu et al, 2007; DS, Bergsma &

Gretton, 2013; Szabo et al, 2015]
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Kernel Embeddings of Distributions

Learning on Distributions

Multiple-Instance Learning: Input is a bag of Bi vectors {xi1, . . . , xiBi},
each xia ∈ X assumed to arise from a probability distribution Pi on X .
Represent the i-th bag by the corresponding empirical kernel embedding
mi = µk [Pi] = 1

Bi

∑Bi
a=1 k(·, xia) w.r.t. a kernel k on X .

Now treat the problem as having inputs mi ∈ Hk: just need to define a
kernel K on Hk.

Linear: K(mi,mj) = 〈mi,mj〉Hk =
1

BiBj

Bi∑
a=1

Bj∑
b=1

k(xia, xjb)

Gaussian: K(mi,mj) = exp
(
− 1

2γ2 ‖mi −mj‖2
Hk

)
.

Term ‖mi −mj‖2
Hk

can be thought of as a distance between empirical
measures corresponding to bags i and j. This is called Maximum Mean
Discrepancy (MMD).
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Kernel Embeddings of Distributions

Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:

6 4 2 0 2 4 6
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MMDk(P,Q) = ‖µk(P)− µk(Q)‖Hk
= sup

f∈Hk: ‖f‖Hk
≤1
|Ef (X)− Ef (Y)|

Characteristic kernels: MMDk(P,Q) = 0 iff P = Q.
Gaussian RBF, Matérn family, inverse multiquadrics...
For characteristic kernels on LCH X , MMD metrizes weak* topology on
probability measures [Sriperumbudur,2010],

MMDk (Pn,P)→ 0⇔ Pn  P.
Kernel embedding represents expectations of RKHS functions:

〈f , µk[P]〉Hk =

∫
f (x)P(dx).
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Kernel Embeddings of Distributions

Two-sample testing on nonstandard domains

k(dogi, fishj)

k(fishi, fishj)

k(dogi, dogj)

k(fishj , dogi)

Figure by Arthur Gretton

Average similarity within two samples
vs average similarity across two

samples.

MMD has been applied to:
independence tests on text data
[Gretton et al, 2009]

two-sample tests on graphs [Gretton

et al, 2012]

training generative neural
networks for image data [Dziugaite,

Roy and Ghahramani, 2015]

two-sample tests on persistence
diagrams in topological data
analysis [Kwitt et al, 2015]

similarity measure between
observed and simulated data in
ABC [Park, Jitkrittum and DS, 2015]

MMD2
k (P,Q) = E

X,X′ i.i.d.∼ P
k(X,X′) + E

Y,Y′ i.i.d.∼ Q
k(Y,Y ′)− 2EX∼P,Y∼Qk(X,Y).
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Kernel Embeddings of Distributions

Kernel dependence measures

X

Y

Dependence witness and sample
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HSIC2(X, Y;κ) =

‖µκ(PXY)− µκ(PXPY)‖2
Hκ

dependence witness is a smooth
function in the RKHS Hκ of functions
on X × Y

k( , )!" #" !"l( , )#"

k( , )× l( , )!" #" !" #"

κ( , ) =!" #"!" #"

Independence testing framework
that generalises Distance
Covariance (dCov): HSIC with
Brownian motion covariance
kernels
[Szekely et al, 2009; DS et al, 2013]
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Fast Approximations

Large Scale Approximations
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Fast Approximations

Kernel methods at scale

Expressivity of kernel methods (rich, often infinite-dimensional hypothesis
spaces) comes with a cost that scales at least quadratically in the number
of observations n (due to needing to compute, store and often invert the
Gram matrix)! We arrived at this by trying to avoid paying the cost in the
dimension of the hypothesis space (e.g., for order d polynomial kernels,
scales as

(p+d
d

)
, and infinite for many kernels).

But now we have to pay in terms of n which is problematic when we have
a lot of observations (and this is exactly when we want to use a rich
expressive model with a high-dimensional hypothesis class!)
Scaling up kernel methods is a very active research area
[Sonnenburg et al, 2006; Rahimi & Recht 2007; Le, Sarlos & Smola, 2013; Wilson et al, 2014; Dai et al,

2014; Sriperumbudur & Szabo, 2015].
Main idea: study the desired hypothesis space and scale its dimension
down - then undo the kernel trick!
Errm... So we went the full circle (!?)
explicit basis functions→ implicit basis functions→ explicit basis
functions
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Fast Approximations

Random Fourier features: Inverse Kernel Trick

Bochner’s representation: any positive definite translation-invariant kernel
on Rp can be written as

k(x, y) =

∫
Rp

exp
(

iω>(x− y)
)

dΛ(ω)

=

∫
Rp

{
cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)}
dΛ(ω)

for some positive measure (w.l.o.g. a probability distribution) Λ.
Sample m frequencies {ωj} ∼ Λ and use a Monte Carlo estimator of the
kernel function instead [Rahimi & Recht, 2007]:

k̂(x, y) =
1
m

m∑
j=1

{
cos
(
ω>j x

)
cos
(
ω>j y

)
+ sin

(
ω>j x

)
sin
(
ω>j y

)}
= 〈ϕω(x), ϕω(y)〉R2m ,

with an explicit set of features x 7→ 1√
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . .

]
.

How fast does m need to grow with n? Sublinear for regression [Bach, 2015]
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Fast Approximations

Inducing variables / Nyström

Directly approximate the n× n Gram matrix KXX of a set of inputs {xi}n
i=1

with
K̂XX = KXZK−1

ZZ KZX

where KZZ is m× m on “inducing” inputs {zi}m
i=1.

Corresponds to explicit feature representation x 7→ KxZK−1/2
ZZ .

Surrogate kernel k̂(x, x′) = 〈k|(·, x), k|(·, x′)〉, where k|(·, x) is a projection
of k(·, x) to span {k(·, z1), . . . , k(·, zm)}
Often used in regression with Gaussian processes: with the use of
Sherman-Morrison-Woodbury identity, reduces O(n3) cost to O(nm2).
[ Quiñonero-Candela and Rasmussen, 2005, Snelson and Ghahramani, 2006 ]

m can grow much slower than n in regression without sacrificing
performance [Rudi, Camoriano & Rosasco, 2015].
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Discussion

Kernel Methods – Discussion

Kernel methods allows for very flexible and powerful machine learning
models.
Nonparametric method: parameter space (e.g., normal vector w in SVM)
can be infinite-dimensional
Kernels can be defined over more complex structures than vectors, e.g.
graphs, strings, images, bags of instances, probability distributions.
In naïve implementation, computational cost is at least quadratic in the
number of observations, often O(n3) computation and O(n2) memory, but
there are various approximations with good scaling up properties.
Further reading:

Schölkopf and Smola, Learning with Kernels, 2001.
Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.
Steinwart and Christmann, Support Vector Machines, 2008.
Berlinet and Thomas-Agnan, Reproducing Kernel Hilbert Spaces in
Probability and Statistics, 2004.
Bishop, Pattern Recognition and Machine Learning, Chapter 6.
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