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Clustering Introduction

Clustering

Many datasets consist of multiple heterogeneous subsets.
Cluster analysis: Given an unlabelled data, want algorithms that
automatically group the datapoints into coherent subsets/clusters.
Examples:

market segmentation of shoppers based on browsing and purchase histories
different types of breast cancer based on the gene expression
measurements
discovering communities in social networks
image segmentation
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Clustering Introduction

Types of Clustering

Model-free clustering:
Defined by similarity/dissimilarity among instances within clusters.

Model-based clustering:
Each cluster is described using a probability model.

Department of Statistics, Oxford SC4/SM4 DMML, HT2017 4 / 36



Clustering Introduction

Model-free clustering

notion of similarity/dissimilarity between data items is central: many ways
to define and the choice will depend on the dataset being analyzed and
dictated by domain specific knowledge
most common approach is partition-based clustering: one divides n data
items into K clusters C1, . . . ,CK where for all k, k′ ∈ {1, . . . ,K},

Ck ⊂ {1, . . . , n} , Ck ∩ Ck′ = ∅ ∀k 6= k′,
K⋃

k=1

Ck = {1, . . . , n} .

Intuitively, clustering aims to group similar items together and to place
separate dissimilar items into different groups
two objectives can contradict each other (similarity is not a transitive
relation, while being in the same cluster is an equivalence relation)
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Clustering Introduction

Axiomatic approach

Clustering method is a map F : (D = {xi}n
i=1, ρ) 7→ {C1, . . . ,CK} which takes

as an input dataset D and a dissimilarity function ρ and returns a partition of
D. Three basic properties required

Scale invariance. For any α > 0, F (D, αρ) = F (D, ρ).
Richness. For any partition C = {C1, . . . ,CK} of D, there exists
dissimilarity ρ, such that F (D, ρ) = C.
Consistency. If ρ and ρ′ are two dissimilarities such that for all xi, xj ∈ D
the following holds:

xi, xj belong to the same cluster in F (D, ρ) =⇒ ρ′(xi, xj) ≤ ρ(xi, xj)

xi, xj belong to different clusters in F (D, ρ) =⇒ ρ′(xi, xj) ≥ ρ(xi, xj),

then F (D, ρ′) = F (D, ρ).
Kleinberg (2003) proves that there exists no clustering method that satisfies
all three properties!
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Clustering Introduction

Examples of Model-free Clustering

K-means clustering: a partition-based method into K clusters. Finds
groups such that variation within each group is small. The number of
clusters K is usually fixed beforehand or various values of K are
investigated as a part of the analysis.
Spectral clustering: Similarity/dissimilarity between data items defines a
graph. Find a partition of vertices which does not “cut" many edges. Can
be interpreted as nonlinear dimensionality reduction followed by
K-means.
Hierarchical clustering: nearby data items are joined into clusters, then
clusters into super-clusters forming a hierarchy. Typically, the hierarchy
forms a binary tree (a dendrogram) where each cluster has two
“children” clusters. Dendrogram allows to view the clusterings for each
possible number of clusters, from 1 to n (number of data items).
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Clustering K-means

K-means
Goal: divide data items into a pre-assigned number K of clusters C1, . . . ,CK

where for all k, k′ ∈ {1, . . . ,K},

Ck ⊂ {1, . . . , n} , Ck ∩ Ck′ = ∅ ∀k 6= k′,
K⋃

k=1

Ck = {1, . . . , n} .

Each cluster is represented using a prototype or cluster centroid µk.
We can measure the quality of a cluster with its within-cluster deviance

W(Ck, µk) =
∑
i∈Ck

‖xi − µk‖2
2.

The overall quality of the clustering is given by the total within-cluster
deviance:

W =

K∑
k=1

W(Ck, µk).

W is the overall objective function used to select both the cluster centroids
and the assignment of points to clusters.
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Clustering K-means

K-means

W =

K∑
k=1

∑
i∈Ck

‖xi − µk‖2
2 =

n∑
i=1

‖xi − µci‖2
2

where ci = k if and only if i ∈ Ck.
Given partition {Ck}, we can find the optimal prototypes easily by
differentiating W with respect to µk:

∂W
∂µk

= 2
∑
i∈Ck

(xi − µk) = 0 ⇒ µk =
1
|Ck|

∑
i∈Ck

xi

Given prototypes, we can easily find the optimal partition by assigning
each data point to the closest cluster prototype:

ci = argmin
k
‖xi − µk‖2

2

But joint minimization over both is computationally difficult.
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Clustering K-means

K-means
The K-means algorithm is a widely used method that returns a local optimum
of the objective function W, using iterative and alternating minimization.

1 Randomly initialize K cluster centroids µ1, . . . , µK .
2 Cluster assignment: For each i = 1, . . . , n, assign each xi to the cluster

with the nearest centroid,

ci := argmin
k
‖xi − µk‖2

2

Set Ck := {i : ci = k} for each k.
3 Move centroids: Set µ1, . . . , µK to the averages of the new clusters:

µk :=
1
|Ck|

∑
i∈Ck

xi

4 Repeat steps 2-3 until convergence.
5 Return the partition {C1, . . . ,CK} and means µ1, . . . , µK .
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Clustering K-means
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Clustering K-means
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Clustering K-means
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Clustering K-means
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Clustering K-means
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Clustering K-means
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Clustering K-means
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Clustering K-means

K-means

The algorithm stops in a finite number of iterations. Between steps 2
and 3, W either stays constant or it decreases, this implies that we never
revisit the same partition. As there are only finitely many partitions, the
number of iterations cannot exceed this.
The K-means algorithm need not converge to global optimum.
K-means is a heuristic search algorithm so it can get stuck at suboptimal
configurations. The result depends on the starting configuration. Typically
perform a number of runs from different configurations, and pick the end
result with minimum W.
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Clustering K-means

K-means on Crabs

Looking at the Crabs data again.

library(MASS)
library(lattice)
data(crabs)

splom(~log(crabs[,4:8]),
pch=as.numeric(crabs[,2]),
col=as.numeric(crabs[,1]),
main="circle/triangle is gender, black/red is species")
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Clustering K-means

K-means on Crabs
circle/triangle is gender, black/red is species

Scatter Plot Matrix
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Clustering K-means

K-means on Crabs

Apply K-means with 2 clusters and plot results.

Crabs.kmeans <- kmeans( log(crabs[,4:8]), 2, nstart=1, iter.max=10)

splom(~log(crabs[,4:8]),
col=Crabs.kmeans$cluster+2,
main="blue/green is cluster; finds big/small")
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Clustering K-means

K-means on Crabs
blue/green is cluster finds big/small

Scatter Plot Matrix
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Clustering K-means

K-means on Crabs

‘Whiten’ or ‘sphere’1 the data using PCA.

pcp <- princomp( log(crabs[,4:8]) )
Crabs.sphered <- pcp$scores %*% diag(1/pcp$sdev)
splom( ~Crabs.sphered[,1:3],

col=as.numeric(crabs[,1]),
pch=as.numeric(crabs[,2]),
main="circle/triangle is gender, black/red is species")

And apply K-means again.

Crabs.kmeans <- kmeans(Crabs.sphered, 2, nstart=1, iter.max=20)
splom( ~Crabs.sphered[,1:3],

col=Crabs.kmeans$cluster+2, main="blue/green is cluster")

1Apply a linear transformation so that the covariance matrix is identity.
Department of Statistics, Oxford SC4/SM4 DMML, HT2017 17 / 36



Clustering K-means

K-means on Crabs

circle/triangle is gender, black/red is species

Scatter Plot Matrix
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Discovers gender difference...
But the result depends crucially on sphering the data first!
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Clustering K-means

K-means on Crabs with K = 4
circle/triangle is gender, black/red is species

Scatter Plot Matrix
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> table(Crabs.kmeans$cluster,Crabs.class)
Crabs.class
BF BM OF OM

1 3 0 41 0
2 39 8 6 0
3 8 42 0 0
4 0 0 3 50
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Clustering K-means

K-means Additional Comments

Good practice initialization. Randomly pick K training examples
(without replacement) and set µ1, µ2, . . . , µK equal to those examples
Sensitivity to distance measure. Euclidean distance can be greatly
affected by measurement unit and by strong correlations. Can use
Mahalanobis distance instead:

‖x− y‖M =
√

(x− y)>M−1(x− y)

where M is positive semi-definite matrix, e.g. sample covariance.
Determination of K. The K-means objective will always improve with
larger number of clusters K. Determination of K requires an additional
regularization criterion. E.g., in DP-means2, use

W =
K∑

k=1

∑
i∈Ck

‖xi − µk‖2
2 + λK

2DP-means paper.
Department of Statistics, Oxford SC4/SM4 DMML, HT2017 20 / 36

http://www.cs.berkeley.edu/~jordan/papers/kulis-jordan-icml12.pdf


Clustering K-means

Other partition based methods

Other partition-based methods with related ideas:
K-medoids3: requires cluster centroids µi to be an observation xj

K-medians: cluster centroids represented by a median in each
dimension
K-modes: cluster centroids represented by a mode estimated from a
cluster

3See also Affinity propagation.
Department of Statistics, Oxford SC4/SM4 DMML, HT2017 21 / 36

http://www.psi.toronto.edu/index.php?q=affinity%20propagation


Clustering Spectral Clustering

Nonlinear cluster structures

K-means algorithm will often fail when applied to data with elongated or
non-convex cluster structures.
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Clustering Spectral Clustering

Clustering and Graph Cuts

Construct a weighted undirected similarity graph G = ({1, . . . , n},W),
where vertices correspond to data items and W is the matrix of edge
weights corresponding to pairwise item similarities.
Partition the graph vertices into C1,C2, . . . ,CK to minimize the graph cut.
The unnormalized graph cut across clusters is given by

cut (C1, . . . ,CK) =

K∑
k=1

cut(Ck, C̄k),

where C̄k is the complement of Ck and cut(A,B) =
∑

i∈A,j∈B wij is the sum
of the weights separating vertex subset A from the vertex subset B, where
A and B are disjoint.
Typically results with singleton clusters, so one needs to balance the cuts
by the cluster sizes in the partition. One approach is to consider the
notion of “ratio cut"

ratio-cut (C1, . . . ,CK) =

K∑
k=1

cut(Ck, C̄k)

|Ck|
.

Department of Statistics, Oxford SC4/SM4 DMML, HT2017 23 / 36



Clustering Spectral Clustering

Graph Laplacian

The (unnormalized) Laplacian of a graph G = ({1, . . . , n},W) is an n× n
matrix given by

L = D−W,

where D is a diagonal matrix with Dii = deg(i), and deg(i) denotes the degree
of vertex i defined as

deg(i) =

n∑
j=1

wij.

Laplacian always has the column vector 1 as an eigenvector with
eigenvalue 0 (since all rows sum to zero)
(exercise) Laplacian is a positive semi-definite matrix so all the
eigenvalues are non-negative.
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Laplacian and Ratio Cuts

Lemma
For a given partition C1,C2, . . . ,CK define the column vectors hk ∈ Rn as

hk,i =
1√
|Ck|

1{i∈Ck}.

Then

ratio-cut (C1, . . . ,CK) =

K∑
k=1

h>k Lhk. (1)

To minimize the ratio cut, search for orthonormal vectors hk with entries either
0 or 1/

√
|Ck| which minimize the RHS in (1).

Equivalent to integer programming so computationally hard.
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Laplacian and Ratio Cuts

Lemma
For a given partition C1,C2, . . . ,CK define the column vectors hk ∈ Rn as

hk,i =
1√
|Ck|

1{i∈Ck}.

Then

ratio-cut (C1, . . . ,CK) =

K∑
k=1

h>k Lhk. (1)

Relaxation: Search for any collection of orthonormal vectors hk in Rn that
minimize RHS in (1) – which corresponds to the eigendecomposition of the
Laplacian.
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Laplacian and Connected Components

If the original graph is disconnected, in addition to 1, there would be other
0-eigenvectors of L, corresponding to the indicators of the connected
components of the graph (Murphy – Theorem 25.4.1).
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Laplacian and Connected Components

Spectral clustering treats the constructed graph as a “small perturbation" of a
disconnected graph.
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Eigenvectors as dimensionality reduction
Spectral Clustering. Eigendecompose L and take the K eigenvectors
corresponding to the K smallest eigenvalues – this gives a new "data matrix"

Z = [u1, . . . , uK ] ∈ Rn×K

on which we can apply a more conventional clustering algorithm, such as
K-means.
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Hierarchical Clustering

Hierarchically structured data is ubiquitous (genus, species, subspecies,
individuals...)
There are two general strategies for generating hierarchical clusters.
Both proceed by seeking to minimize some measure of overall
dissimilarity.

Agglomerative / Bottom-Up / Merging
Divisive / Top-Down / Splitting

Higher level clusters are created by merging clusters at lower levels. This
process can easily be viewed by a tree/dendrogram.
Avoids specifying how many clusters are appropriate.

hclust, agnes{cluster}
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EU Indicators Data

6 Economic indicators for EU countries in 2011.

> eu<-read.csv(
’http://www.stats.ox.ac.uk/~sejdinov/sdmml/data/eu_indicators.csv’,sep=’ ’)

> eu[1:15,]
Countries abbr CPI UNE INP BOP PRC UN_perc

1 Belgium BE 116.03 4.77 125.59 908.6 6716.5 -1.6
2 Bulgaria BG 141.20 7.31 102.39 27.8 1094.7 3.5
3 CzechRep. CZ 116.20 4.88 119.01 -277.9 2616.4 -0.6
4 Denmark DK 114.20 6.03 88.20 1156.4 7992.4 0.5
5 Germany DE 111.60 4.63 111.30 499.4 6774.6 -1.3
6 Estonia EE 135.08 9.71 111.50 153.4 2194.1 -7.7
7 Ireland IE 106.80 10.20 111.20 -166.5 6525.1 2.0
8 Greece EL 122.83 11.30 78.22 -764.1 5620.1 6.4
9 Spain ES 116.97 15.79 83.44 -280.8 4955.8 0.7
10 France FR 111.55 6.77 92.60 -337.1 6828.5 -0.9
11 Italy IT 115.00 5.05 87.80 -366.2 5996.6 -0.5
12 Cyprus CY 116.44 5.14 86.91 -1090.6 5310.3 -0.4
13 Latvia LV 144.47 12.11 110.39 42.3 1968.3 -3.6
14 Lithuania LT 135.08 11.47 114.50 -77.4 2130.6 -4.3
15 Luxembourg LU 118.19 3.14 85.51 2016.5 10051.6 -3.0

Data from Greenacre (2012)
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EU Indicators Data

dat<-scale(eu[,3:8])
rownames(dat)<-eu$Countries
biplot(princomp(dat))
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Visualising Hierarchical Clustering

> hc<-hclust(dist(dat))
> plot(hc,hang=-1)
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Cluster Dendrogram

hclust (*, "complete")
dist(dat)
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t

> library(ape)
> plot(as.phylo(hc), type = "fan")
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Visualising Hierarchical Clustering

Levels in the dendrogram represent a dissimilarity between examples.
Tree dissimilarity dT

ij = minimum height in the tree at which examples i
and j belong to the same cluster.
ultrametric (stronger than triangle) inequality:

dT
ij ≤ max{dT

ik, d
T
kj}.

Hierarchical clustering can be interpreted as an approximation of a given
dissimilarity dij by an ultrametric dissimilarity.
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Measuring Dissimilarity Between Clusters
To join clusters Ci and Cj into super-clusters, we need a way to measure the
dissimilarity D(Ci,Cj) between them.
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Measuring Dissimilarity Between Clusters
To join clusters Ci and Cj into super-clusters, we need a way to measure the
dissimilarity D(Ci,Cj) between them.
(a) Single Linkage: elongated, loosely connected clusters

D(Ci,Cj) = min
x,y

(d(x, y)|x ∈ Ci, y ∈ Cj)

(b) Complete Linkage: compact clusters, relatively similar objects can
remain separated at high levels

D(Ci,Cj) = max
x,y

(d(x, y)|x ∈ Ci, y ∈ Cj)

(c) Average Linkage: tries to balance the two above, but affected by the
scale of dissimilarities

D(Ci,Cj) = avgx,y (d(x, y)|x ∈ Ci, y ∈ Cj)
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Using Dendrograms

Different ways of measuring dissimilarity result in different trees.
Dendrograms are useful for getting a feel for the structure of
high-dimensional data though they don’t represent distances between
observations well.
Dendrograms depict cluster assignments with respect to increasing
values of dissimilarity threshold. Cutting a dendrogram horizontally at a
particular height partitions the data into disjoint clusters which are
represented by the vertical lines it intersects.
Despite the simplicity of this idea and the above drawbacks, hierarchical
clustering methods provide users with interpretable dendrograms that
allow clusters in high-dimensional data to be better understood.
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Further reading

Hastie et al, 14.3
Murphy, 25
Shalev-Shwartz and Ben-David, 22
von Luxburg: Tutorial on Spectral Clustering
Clustering on scikit-learn

Department of Statistics, Oxford SC4/SM4 DMML, HT2017 36 / 36

https://arxiv.org/abs/0711.0189
http://scikit-learn.org/stable/modules/clustering.html

	Clustering
	Introduction
	K-means
	Spectral Clustering
	Hierarchical Clustering


